Project Manual

Project No.: 17-0475 **Issue Date:** November 8, 2017

Tri-City Medical Center

Emergency Central Plant Improvements

4002 Vista Way Oceanside, California 92056

OSHPD SUBMITTAL OSHPD #S172470-37-00

OWNER:

Tri-City Medical Center 4002 Vista Way Oceanside, California 92056

ARCHITECT:

CUNINGHAM G R O U P

Cuningham Group Architecture, Inc. 1030 G Street San Diego, California 92101 THIS PAGE INTENTIONALLY LEFT BLANK

SECTION 00 01 00 - CERTIFICATIONS AND SEALS

PROJECT: TRI-CITY MEDICAL CENTER Emergency Central Plant Improvements 4002 Vista Way Oceanside, California 92056

OSHPD NO.: S172470-37-00

PROJECT NO.: 17-0475

ARCHITECT'S CERTIFICATION:

I hereby certify that Divisions 01 through 14 of this Specification were prepared by me or under my direct supervision and that I am a duly Licensed Architect under the laws of the State of California.

Architect's Firm Name: Cuningham Group Architecture, Inc.

Seal

Date: November 8, 2017

MECHANICAL ENGINEER'S CERTIFICATION:

I hereby certify that Division 22-23 Sections of this Specification were prepared by me or under my direct supervision and that I am a duly Licensed Professional Engineer under the laws of the State of California.

Engineer's Firm Name: Dufoe Consulting Engineers

Date: November 8, 2017

Seal

THIS PAGE INTENTIONALLY LEFT BLANK

ELECTRICAL ENGINEER'S CERTIFICATION:

I hereby certify that Divisions 26-28 Sections of this Specification were prepared by me or under my direct supervision (unless indicated otherwise) and that I am a duly Licensed Professional Engineer under the laws of the State of California.

Engineer's Firm Name: Stantec Consulting Engineers, Inc.

OSHPD #S172470-37-00

OSHPD Submittal: 11/08/2017

Date: November 8, 2017

Seal

THIS PAGE INTENTIONALLY LEFT BLANK

SECTION 00 01 03 - PROJECT DIRECTORY

PROJECT:	TRI-CITY MEDICAL CENTER Emergency Central Plant Improvements 4002 Vista Way Oceanside, California 92056		
OSHPD NO.:	S172470-37-00		
PROJECT NO.:	17-0475		
OWNER:	Tri-City Medical Center 4002 Vista Way Oceanside, California 92056		
ARCHITECT:	Cuningham Group Architecture, Inc. 1030 G Street San Diego, California 92101 Telephone: (619) 849-1080 Facsimile: (619) 849-1089		
STRUCTURAL ENGINEER:	Degenkolb Engineers 225 Broadway, Suite 1325 San Diego, California 92101 Telephone: (619) 515-0299 Facsimile: (619) 515-0298		
MECHANICAL ENGINEER:	Dufoe Consulting Engineers 9665 Chesapeake Drive, Suite 320 San Diego, California 92123 Telephone: (619) 368-8630 Facsimile: (866) 517-3293		
ELECTRICAL ENGINEER:	Stantec Consulting Services, Inc. 9191 Towne Center Drive, Suite 220 San Diego, California 92122 Telephone: (858) 622-2744 Facsimile: (858) 622-2701		

END OF DOCUMENT

SECTION 00 01 10 - TABLE OF CONTENTS

DIVISION 00 – PROCUREMENT AND CONTRACTING REQUIREMENTS

- 00 01 01 PROJECT DIRECTORY
- 00 01 02 PROJECT INFORMATION
- 00 01 05 CERTIFICATIONS AND SEALS
- 00 01 10 TABLE OF CONTENTS
- 00 63 25 SUBSTITUTION REQUEST FORM

DIVISION 01 – GENERAL REQUIREMENTS

- 01 10 00 SUMMARY
- 01 20 00 PRICE AND PAYMENT PROCEDURES
- 01 25 00 SUBSTITUTION PROCEDURES
- 01 30 00 ADMINISTRATIVE REQUIREMENTS
- 01 30 00.01 REQUEST FOR INFORMATION FORM
- 01 32 16 CONSTRUCTION PROGRESS SCHEDULE
- 01 35 53 SECURITY PROCEDURES
- 01 40 00 QUALITY REQUIREMENTS
- 01 41 00 REGULATORY REQUIREMENTS
- 01 42 16 DEFINITIONS
- 01 45 33 CODE-REQUIRED SPECIAL INSPECTIONS
- 01 50 00 TEMPORARY FACILITIES AND CONTROLS
- 01 60 00 PRODUCT REQUIREMENTS
- 01 61 16 VOLATILE ORGANIC COMPOUND (VOC) CONTENT RESTRICTIONS
- 01 70 00 EXECUTION AND CLOSEOUT REQUIREMENTS
- 01 74 19 CONSTRUCTION WASTE MANAGEMENT AND DISPOSAL
- 01 78 00 CLOSEOUT SUBMITTALS
- 01 79 00 DEMONSTRATION AND TRAINING
- 01 91 13 GENERAL COMMISSIONING REQUIREMENTS

DIVISION 02 - EXISTING CONDITIONS

02 41 00 DEMOLITION

DIVISION 05 - METALS

05 50 00 METAL FABRICATIONS

DIVISION 07 - THERMAL AND MOISTURE PROTECTION

07 92 00 JOINT SEALANTS

DIVISION 09 - FINISHES

- 09 91 13 EXTERIOR PAINTING
- 09 91 23 INTERIOR PAINTING

DIVISION 10 - SPECIALTIES

10 14 00 SIGNAGE

DIVISION 22 – PLUMBING

- 22 05 17 SLEEVES AND SLEEVE SEALS FOR PLUMBING PIPING
- 22 05 23 GENERAL-DUTY VALVES FOR PLUMBING PIPING
- 22 05 29 HANGERS AND SUPPORTS FOR PLUMBING PIPING AND EQUIPMENT
- 22 05 48 VIBRATION AND SEISMIC CONTROLS FOR PLUMBING PIPING AND EQUIPMENT
- 22 05 53 IDENTIFICATION FOR PLUMBING PIPING AND EQUIPMENT
- 22 11 16 DOMESTIC WATER PIPING
- 22 11 19 DOMESTIC WATER PIPING SPECIALTIES
- 22 13 16 SANITARY WASTE AND VENT PIPING
- 22 13 19 SANITARY WASTE PIPING SPECIALTIES

DIVISION 23 - HEATING, VENTING, AND AIR CONDITIONING (HVAC)

- 23 00 00 GENERAL MECHANICAL REQUIREMENTS
- 23 05 16 EXPANSION FITTINGS AND LOOPS FOR HVAC PIPING
- 23 05 17 SLEEVES AND SLEEVE SEALS FOR HVAC PIPING
- 23 05 19 METERS AND GAGES FOR HVAC PIPING
- 23 05 23 GENERAL-DUTY VALVES FOR HVAC PIPING
- 23 05 29 HANGERS AND SUPPORTS FOR HVAC PIPING AND EQUIPMENT
- 23 05 48 VIBRATION AND SEISMIC CONTROLS FOR HVAC
- 23 05 53 IDENTIFICATION FOR HVAC PIPING AND EQUIPMENT
- 23 05 93 TESTING, ADJUSTING, AND BALANCING FOR HVAC
- 23 07 16 HVAC EQUIPMENT INSULATION
- 23 07 19 HVAC PIPING INSULATION
- 23 21 13 HYDRONIC PIPING
- 23 21 16 HYDRONIC PIPING SPECIALTIES
- 23 21 23 HYDRONIC PUMPS
- 23 31 13 METAL DUCTS
- 23 33 00 AIR DUCT ACCESSORIES
- 23 64 16 CENTRIFUGAL WATER CHILLERS
- 23 65 00 COOLING TOWERS

DIVISION 26 – ELECTRICAL

- 26 05 00 COMMON WORK RESULTS FOR ELECTRICAL
- 26 05 19 LOW-VOLTAGE ELECTRICAL POWER CONDUCTORS AND CABLES
- 26 05 26 GROUNDING AND BONDING FOR ELECTRICAL SYSTEMS
- 26 05 33 RACEWAYS AND BOXES FOR ELECTRICAL SYSTEMS
- 26 05 48 VIBRATION AND SEISMIC CONTROLS FOR ELECTRICAL SYSTEMS
- 26 05 53 IDENTIFICATION FOR ELECTRICAL SYSTEMS
- 26 05 83 ACCEPTANCE TESTING FOR ELECTRICAL SYSTEMS
- 26 27 26 WIRING DEVICES
- 26 28 13 FUSES
- 26 28 16 ENCLOSED SWITCHES AND CIRCUIT BREAKERS
- 26 29 13 ENCLOSED CONTROLLERS
- 26 29 23 VARIABLE-FREQUENCY MOTO CONTROLLERS (BY MECHANICAL)

DIVISION 28 – ELECTRONIC SAFETY AND SECURITY

28 35 00 REFRIGERANT DETECTION AND ALARM (BY MECHANICAL)

DIVISION 31 – EARTHWORK

31 10 00	SITE CLEARING
31 10 00	SITE CLEARING

- 31 22 00 GRADING
- 31 23 23 FILL

DIVISION 32 – EXTERIOR IMPROVEMENTS

- 32 11 23 AGGREGATE BASE COURSES
- 32 12 16 ASPHALT PAVING
- 32 13 13 CONCRETE PAVING
- 32 17 13 PARKING BUMPERS
- 32 17 23.13 PAINTED PAVEMENT MARKINGS
- 32 30 00 SITE FURNISHINGS

END OF SECTION

SECTION 00 63 25 - SUBSTITUTION REQUEST FORM

CONTRACTOR: TO: CGA, ATTN:			REQUEST NO SECTION:).:
Disciplines Impacted:	[] Structural [] Civil	[] Mechanical [] Landscape	[] Electrical [] Foodservice	[] Architectural e []
By submitting substit Proposed substitution d The Architect's costs ca Proposed substitution d Proposed substitution w Proposed substitution w parts. Summary of Proposed	ution, Contractor st loes not alter dimensi aused by proposed su loes not adversely imp vill not adversely impa vill not adversely impa	ipulates the follow ions or dimensional ubstitution will be c pact schedule or c act warranty requinant act availability of se	wing statements al relationships sh ompensated per oordination of wo ements. ervice, maintenar	s are correct: nown on drawings. Section 01 25 00. ork by others. nce or replacement
Reason for Proposed S	ubstitution:			
Comparison of proposed item to specified per Section			[] Attached	[] Under separate
Name and location of three similar applications:			[] Attached	[] Under separate
Description of required changes to the drawings and project			[] Attached	cover [] Under separate
Description of impact on applicable code requirements:			[] Attached	[] Under separate
Name and location of maintenance service and parts supply:			[] Attached	[] Under separate cover
If Substitution Request Possible Cost Impact: Possible Time Impact:	is accepted, there wil [] Increase [] Increase	l be: [] Decrease [] Decrease	[] No Change [] No Change	[] Unknown [] Unknown
Action on this Substitution Request is requested as soon as possible, but no later than			[] Priority Att	tention Required
Contractor's Poprocont	ativo		Copies to:	
Contractor s Represent	auve			
Architect's Response: [] Increase	itect's Response: crease [] Decrease [] No Ch		ange	Date: [] Unknown
Cuningham Group Rep	resentative		Copies to:	
			Copies to:	
Owner's Representative	9		-	
	EN	D OF SECTION	1	

SECTION 01 10 00 - SUMMARY

PART 1 GENERAL

- 1.1 PROJECT
 - A. Project Name: Tri-City Medical Center Emergency Central Plant Improvements
 - B. Owner's Name: Tri-City Medical Center.
 - C. Architect's Name: Cuningham Group Architecture, Inc..
 - D. The Project consists of emergency improvements to the Central Plant mechanical equipment, including the removal of existing equipment being replaced and installation of new mechanical equipment. Electrical, structural (new pads and pad reinforcements), related demolition, and site work, will be performed as part of the improvements.

1.2 DESCRIPTION OF ALTERATIONS WORK

- A. Scope of demolition and removal work is indicated on drawings and specified in Section 02 41 00.
- B. Scope of alterations work is indicated on drawings.
- C. Plumbing: Alter existing and add new construction.
- D. HVAC: Alter existing and add new construction.
- E. Electrical Power and Lighting: Alter existing and add new construction.
- F. Fire Alarm: Alter existing system and add new construction, keeping existing in operation.

1.3 OWNER OCCUPANCY

- A. Owner intends to continue to occupy adjacent portions of the existing building during the entire construction period.
- B. Owner intends to occupy the Project upon Substantial Completion.
- C. Cooperate with Owner to minimize conflict and to facilitate Owner's operations.
- D. Schedule the Work to accommodate Owner occupancy.
- 1.4 CONTRACTOR USE OF SITE AND PREMISES
 - A. Construction Operations: Limited to areas noted on Drawings.
 - B. Arrange use of site and premises to allow:
 - 1. Owner occupancy.
 - 2. Use of site by the public.
 - C. Provide access to and from site as required by law and by Owner:
 - 1. Emergency Building Exits During Construction: Keep all exits required by code open during construction period; provide temporary exit signs if exit routes are temporarily altered.
 - 2. Do not obstruct roadways, sidewalks, or other public ways without permit.
 - D. Time Restrictions:
 - 1. Limit conduct of especially noisy, malodorous, and dusty exterior work to the hours stipulated by the Owner.
 - E. Utility Outages and Shutdown:
 - 1. Do not disrupt or shut down life safety systems, including but not limited to fire sprinklers and fire alarm system, without 7 days notice to Owner and authorities having jurisdiction.
 - 2. Prevent accidental disruption of utility services to other facilities.

PART 2 PRODUCTS - NOT USED

PART 3 EXECUTION - NOT USED

END OF SECTION

SECTION 01 20 00 - PRICE AND PAYMENT PROCEDURES

PART 1 GENERAL

- 1.1 SECTION INCLUDES
 - A. Schedule of Values.
 - B. Procedures for preparation and submittal of applications for progress payments.
 - C. Documentation of changes in Contract Sum and Contract Time.
 - D. Change procedures.
 - E. Correlation of Contractor submittals based on changes.
 - F. Procedures for preparation and submittal of application for final payment.

1.2 RELATED REQUIREMENTS

- A. Section 01 78 00 Closeout Submittals: Project record documents.
- B. CBSC (CAC) California Administrative Code (Part 1 of Title 24, California Code of Regulations), Chapter 7; 2016.
- 1.3 SCHEDULE OF VALUES
 - A. Use Schedule of Values Form: AIA G703, edition stipulated in the Agreement.
 - B. Electronic media printout including equivalent information will be considered in lieu of standard form specified; submit draft to Architect for approval.
 - C. Forms filled out by hand will not be accepted.
 - D. Submit Schedule of Values per schedule defined in General Conditions, modified per Supplementary Conditions and as specified.
 - E. Identification: Include on Schedule of Values the following:
 - 1. Project name and location.
 - 2. Name of Architect.
 - 3. Architect's project number.
 - 4. Contractor's name and address.
 - 5. Date of Submittal.
 - 6. Name of subcontractor.
 - 7. Name of manufacturer or fabricator where applicable.
 - 8. Name of supplier where applicable.
 - F. Format: Utilize the Table of Contents of this Project Manual. Identify each line item with number and title of the specification section. Identify site mobilization.
 - 1. Include Change Order amounts allocated to the line item.
 - 2. Include total dollar value of item. Round amounts to nearest dollar.
 - 3. Indicate percentage of Contract Sum represented by item, rounded to nearest one hundredth of one percent, adjusted to total 100 percent. The total of the amounts of all scheduled line items shall equal the Contract Sum.
 - G. Correlate line items with terms and identification used in other administrative work items, including schedules, list of subcontractors, list of products and suppliers, and submittal schedule.
 - H. Include separately from each line item, a direct proportional amount of Contractor's overhead and profit.
 - I. Where Application For Payment includes requests for equipment, components or materials purchased, stored or fabricated, but not yet installed, provide separate line item in Schedule of Values for such items. Break down such items to include component, equipment, or material cost for each phase or sequence of construction, with associated staging, transport and installation cost.

- J. Revise schedule to list approved Change Orders and Construction Change Directives, with each Application For Payment.
- K. The amounts shown on Schedule of Values may be used by Owner to determine the true value for additive or deductive change orders.

1.4 APPLICATIONS FOR PROGRESS PAYMENTS

- A. Payment Period: Submit at intervals stipulated in the Agreement.
- B. Electronic media printout including equivalent information will be considered in lieu of standard form specified; submit sample to Architect for approval.
- C. Forms filled out by hand will not be accepted.
- D. Submit Applications for Progress Payments as follows:
 - 1. Submit initial rough draft of payment application to Architect and Owner for review.
 - 2. Architect will return initial rough draft of payment application to Contractor following review.
 - 3. Submit adjusted payment application to Architect.
- E. For each item, provide a column for listing each of the following:
 - 1. Item Number.
 - 2. Description of work.
 - 3. Scheduled Values.
 - 4. Previous Applications.
 - 5. Work in Place under this Application.
 - 6. Authorized Change Orders.
 - 7. Total Completed to Date of Application.
 - 8. Percentage of Completion.
 - 9. Balance to Finish.
 - 10. Retainage.
- F. Complete every entry on the form, and execute notarized certification by signature of authorized officer. Incomplete applications will be returned without action.
- G. Use data from approved Schedule of Values. Provide dollar value in each column for each line item for portion of work performed .
 - 1. Entries shall match data on the Schedule of Values and Contractor's Construction Schedule. Use updated schedules if revisions have been made.
- H. List each authorized Change Order and Construction Change Directive issued prior to the last day of the construction period covered by the application as a separate line item, listing Change Order or Construction Change Directive number and dollar amount as for an original item of Work.
- I. Submit one electronic and three hard-copies of each Application for Payment unless agreed upon otherwise.
- J. Include the following with the application:
 - 1. Transmittal letter as specified for submittals in Section 01 30 00.
 - 2. Construction progress schedule, revised and current as specified in Section 01 32 16.
 - 3. Current construction photographs specified in Section 01 30 00.
 - 4. Conditional lien releases for work covered by current application, and unconditional releases for work covered by previous month's billings.
 - 5. Project record documents as specified in Section 01 78 00, for review by Owner which will be returned to the Contractor.
- K. When Architect requires substantiating information, submit data justifying dollar amounts in question. Provide one copy of data with cover letter for each copy of submittal. Show application number and date, and line item by number and description.
- 1.5 MODIFICATION PROCEDURES
 - A. General

- Any change and/or modification in the work must be executed in substantial conformance with Construction Documents approved by the Office of Statewide Health Planning and Development (OSHPD) per CAC Section 7-153.
- All changes in contract for construction that materially affect the work, as defined by OSHPD, regardless of effect on Contract Sum or Contract Time, require OSHPD approval in accordance with Section 7- 153, Part 1, Title 24 CCR, "Addenda, Change Orders, and Instructional Bulletins."
- 3. Contractor shall establish measures as needed to assure familiarity of the Contractor's staff and employees with procedures for processing changes to the Contract Documents.
- 4. The Contractor shall maintain and coordinate a Register of RFI's, Architect's Supplemental Instructions, Contractor Change Order Requests, Construction Change Directives, and Change Orders at the job site, accurately reflecting current status of all pertinent data as submitted by the Contractor.
- 5. Architect will provide a single copy of all documents issued under this article for transmission to Contractor. Contractor shall prepare copies as required for distribution to subcontractors, suppliers and others at no cost to Owner.
- B. Architect's Supplemental Instructions (ASI): The Architect will advise of minor changes in the Work that do not involve an adjustment to Contract Sum or Contract Time by issuing supplemental instructions on AIA Form G710 or other Architect-issued document.
 - 1. If Contractor considers the minor change does represent a change in the Contract, Contractor shall immediately notify the Architect of Contractor's intention to make a claim.
- C. Proposal Request (PR): The Architect may issue a Proposal Request which includes a detailed description of a proposed change with supplementary or revised drawings and specifications.
 - 1. Analyze the described change and its impact on costs and time. Submit response within 10 days. If accepted by Owner, Architect will prepare Change Order.
 - 2. When requested, meet with the Architect as required to explain costs and, when appropriate, determine other acceptable ways to achieve the desired objective.
 - 3. Alert pertinent personnel and subcontractors as to the impending change and, to the maximum extent possible, avoid such work as would increase the Owner's cost for making the change, advising the Architect in writing when such avoidance no longer is practicable.
 - 4. Following review, and if accepted by Owner, Architect will prepare Change Order.
- D. Change Order Request (COR):
 - 1. Contractor may submit a COR to the Architect for changes in conditions, Owner changes, or other direction from the Architect, jurisdictional authority or Owner's Inspector.
 - 2. Document the proposed change and its complete impact, including its effect on the cost and schedule of the work.
 - 3. Present total cost and schedule impacts in documentation, including all markups permitted by General Conditions. Provide detailed substantiating documentation as required by Architect, including supplier costs, subcontractor labor time and rates, and all other data deemed necessary by Architect for Owner's and Architect's review of COR.
 - 4. Following final review by Architect and Owner of original and supplemental information, and if COR is accepted, no additional cost or schedule adjustments will be included.
 - 5. Architect will review COR. If accepted, Architect will prepare a Change Order or Construction Change Directive.
- E. Change Order (CO): Change Orders and Construction Change Directives will be issued by the Architect in accordance with procedures established in General Conditions.
 - 1. Execution of Change Orders: Architect will issue Change Orders for signatures of Owner, Architect, and Contractor as provided in the General Conditions of the Contract.
- F. Construction Change Directives (CCD): CCD's will be issued by the Architect in those cases where contract cost or time for the modification is in dispute..
 - 1. Construction Change Directive Forms: AIA G714 Construction Change Directive Form, current edition, or other format as selected by Architect.
 - 2. Execution of Construction Change Directive: Architect will issue CCD with Owner's signature. Proceed with work as defined by CCD.

- 3. Unless otherwise agreed, maintain detailed records of work done under the direction of a CCD on Time and Material basis. Provide full information required to substantiate costs for changes in the Work.
- 4. Following agreement on cost of the work, a Change Order will be prepared.
- G. Substantiation of Costs: Provide full information required for evaluation.
 - 1. Provide the following data:
 - a. Quantities of products, labor, and equipment.
 - b. Taxes, insurance, and bonds.
 - c. Overhead and profit.
 - d. Justification for any change in Contract Time.
 - e. Credit for deletions from Contract, similarly documented.
 - 2. Support each claim for additional costs with additional information:
 - a. Origin and date of claim.
 - b. Dates and times work was performed, and by whom.

 - c. Time records and wage rates paid.d. Invoices and receipts for products, equipment, and subcontracts, similarly documented.
 - 3. For Time and Material work, submit itemized account and supporting data after completion of change, within time limits indicated in the Conditions of the Contract.
 - a. No payment on Time and Materials basis will be made without signature of Owner's Inspector certifying time spent and materials used. Architect and Owner's Inspector shall establish documentation and reporting procedure for Time and Material certification.
- H. After execution of Change Order, promptly revise Schedule of Values and Application for Payment forms to record each authorized Change Order as a separate line item and adjust the Contract Sum.
- Promptly revise progress schedules to reflect any change in Contract Time, revise sub-schedules Ι. to adjust times for other items of work affected by the change, and resubmit.
- Promptly enter changes in Project Record Documents. J.
- 1.6 PAYMENT FOR CONTRACT DOCUMENT MODIFICATIONS
 - The Contractor shall compensate the Owner, by Owner-Contractor Contract adjustment, for the Α. Architect reasonable costs to modify Contract Documents required by work not performed in accordance with approved Contract Documents.
- 1.7 OWNER'S INSPECTOR PAYMENT PROVISIONS
 - A. In the event Contractor's performance of the work activities requires the Owner's Inspector to work overtime, holidays or weekends, Inspector's cost shall be reimbursed by Contractor to Owner by deductive contract adjustment.

1.8 APPLICATION FOR FINAL PAYMENT

- A. Prepare Application for Final Payment as specified for progress payments, identifying total adjusted Contract Sum, previous payments, and sum remaining due.
- B. Application for Final Payment will not be considered until the following have been accomplished: 1. All closeout procedures specified in Section 01 70 00.

PART 2 PRODUCTS - NOT USED

PART 3 EXECUTION - NOT USED

END OF SECTION

SECTION 01 25 00 - SUBSTITUTION PROCEDURES

PART 1 GENERAL

- 1.1 SECTION INCLUDES
 - A. Procedural requirements for proposed substitutions.

1.2 RELATED REQUIREMENTS

- A. Section 00 63 25 Substitution Request Form: Required form for substitution requests.
- B. Section 01 30 00 Administrative Requirements: Submittal procedures, coordination.
- C. Section 01 60 00 Product Requirements: Fundamental product requirements, product options, delivery, storage, and handling.
- D. Section 01 61 16 Volatile Organic Compound (VOC) Content Restrictions: Restrictions on emissions of indoor substitute products.

1.3 DEFINITIONS

- A. Substitutions: Changes from Contract Documents requirements proposed by Contractor to materials, products, assemblies, and equipment.
 - 1. Substitutions for Cause: Proposed due to changed Project circumstances beyond Contractor's control.
 - a. Unavailability.
 - b. Regulatory changes.
 - 2. Substitutions for Convenience: Proposed due to possibility of offering substantial advantage to the Project.
 - a. Substitution requests offering advantages solely to the Contractor will not be considered.

PART 2 PRODUCTS - NOT USED

PART 3 EXECUTION

- 3.1 GENERAL REQUIREMENTS
 - A. A Substitution Request for products, assemblies, materials, and equipment constitutes a representation that the submitter:
 - 1. Has investigated proposed product and determined that it meets or exceeds the quality level of the specified product, equipment, assembly, or system.
 - a. Consideration of whether a substituted product is equal to that specified will include all characteristics of the specified product, based on published data available from the specified manufacturer, whether listed in the specification or not.
 - b. Where the substituted manufacturer's standard product is not equal to that specified, the substituted manufacturer shall provide custom or non-standard products, system components, fabrication, and configuration as necessary to comply with specified criteria, whether or not such criteria are the substituted manufacturers standard or stock item.
 - 2. Agrees to provide the same warranty for the substitution as for the specified product.
 - 3. Agrees to provide same or equivalent maintenance service and source of replacement parts, as applicable.
 - 4. Agrees to coordinate installation and make changes to other work that may be required for the work to be complete, with no additional cost to Owner.
 - 5. Waives claims for additional costs or time extension that may subsequently become apparent.
 - 6. Agrees to reimburse Owner and Architect for review or redesign services associated with re-approval by authorities.
 - a. The Contractor shall pay the Architect and its Consultants for all services rendered for drawings, calculations, review time, and/or agency plan check time for each substitution request.

- b. Compensation shall be made by an adjustment to the Contract amount.
- c. Compensation as agreed upon shall be paid by the Contractor regardless of whether the substitution is approved or rejected.
- d. Review of substitutions shall proceed upon agreement and approval of fees.
- e. Where required by authorities having jurisdiction, Contractor shall pay all plan check fees or fees required to obtain approval.
- B. A Substitution Request for specified installer constitutes a representation that the submitter:
 - 1. Has acted in good faith to obtain services of specified installer, but was unable to come to commercial, or other terms.
- C. Document each request with complete data substantiating compliance of proposed substitution with Contract Documents. Burden of proof is on proposer.
 - 1. Note explicitly any non-compliant characteristics.
- D. Content: Include information necessary for tracking the status of each Substitution Request, and information necessary to provide an actionable response.
 - 1. Use form indicated in the Project Manual for this purpose or other agreed upon form.
 - Contractor's Substitution Request documentation must include the following:
 - a. Project Information:
 - 1) Official project name and number, and any additional required identifiers established in Contract Documents.
 - 2) Owner's, Architect's, and Contractor's names.
 - b. Substitution Request Information:
 - 1) Discrete and consecutive Substitution Request number, and descriptive subject/title.
 - 2) Indication of whether the substitution is for cause or convenience.
 - 3) Issue date.
 - 4) Reference to particular Contract Document(s) specification section number, title, and article/paragraph(s).
 - 5) Description of Substitution.
 - 6) Reason why the specified item cannot be provided.
 - 7) Differences between proposed substitution and specified item.
 - 8) Description of how proposed substitution affects other parts of work.
 - (a) Include coordination information, including a list of changes or modifications needed to other parts of the work and to construction performed by the Owner and separate contractors, that will become necessary to accommodate the proposed substitution.
 - c. Attached Comparative Data: Provide point-by-point, side-by-side comparison addressing essential attributes specified, as appropriate and relevant for the item:
 - 1) Physical characteristics.
 - 2) In-service performance.
 - 3) Expected durability.
 - 4) Visual effect.
 - 5) Sustainable design features.
 - 6) Warranties.
 - 7) Other salient features and requirements.
 - 8) Include, as appropriate or requested, the following types of documentation:
 - (a) Product Data:
 - (b) Samples.
 - (c) Certificates, test, reports or similar qualification data.
 - (d) Drawings, when required to show impact on adjacent construction elements.
 - d. Impact of Substitution:
 - 1) Savings to Owner for accepting substitution.
 - 2) Change to Contract Time due to accepting substitution.
 - (a) Include a statement indicating the substitution's effect on the Construction Progress Schedule compared to the schedule without approval of the substitution. Indicate the effect of the proposed substitution on overall Contract Time.

- E. Limit each request to a single proposed substitution item.
 - 1. Submit an electronic document, combining the request form with supporting data into single document.
- F. Where substitution request is rejected, provide submittal for specified product within five days of receipt of notice rejection.
- G. Where decision cannot be made within the time required for orderly and uninterrupted work progress, provide the specified product.
- H. No product may be substituted without a prior submittal to and approval by the Architect.
- I. Unauthorized and unapproved substitution of material shall be removed from the Site and replaced with specified material at no additional cost to the Owner.
- J. A maximum of one substitution request shall be submitted for any one item.
- K. Substitutions with material effect on the project will be submitted for approval of authorities having jurisdiction prior to fabrication or installation.

3.2 SUBSTITUTION PROCEDURES DURING BIDDING PHASE

A. Instructions to Bidders specifies time restrictions for submitting requests for substitutions during the bidding period, and the documents required.

3.3 SUBSTITUTION PROCEDURES AFTER BIDDING PHASE

- A. Architect will consider requests for substitutions only within 90 days after date established in Notice to Proceed.
- B. Submit request for Substitution for Cause within 14 days of discovery of need for substitution, but not later than 14 days prior to time required for review and approval by Architect, in order to stay on approved project schedule.
- C. Submit request for Substitution for Convenience immediately upon discovery of its potential advantage to the project, but not later than 14 days prior to time required for review and approval by Architect, in order to stay on approved project schedule.
 - 1. In addition to meeting general documentation requirements, document how the requested substitution benefits the Owner through cost savings, time savings, greater energy conservation, or in other specific ways.
 - 2. Document means of coordinating of substitution item with other portions of the work, including work by affected subcontractors.
 - 3. Bear the costs engendered by proposed substitution of:
 - a. Owner's compensation to the Architect for any required redesign, time spent processing and evaluating the request.
 - b. Other construction by Owner.
 - c. Other unanticipated project considerations.
- D. Substitutions will not be considered under one or more of the following circumstances:
 - 1. When they are indicated or implied on shop drawing or product data submittals, without having received prior approval.
 - 2. Without a separate written request.

3.4 RESOLUTION

- A. Architect may request additional information and documentation prior to rendering a decision. Provide this data in an expeditious manner.
- B. Architect will notify Contractor in writing of decision to accept or reject request.
 - 1. Architect's decision following review of proposed substitution will be noted on the submitted form.
 - 2. Consideration of whether a substituted product is equal to that specified is solely the decision of the Architect.

3.5 ACCEPTANCE

- A. Accepted substitutions change the work of the Project. They will be documented and incorporated into work of the project by Change Order, Construction Change Directive, Architectural Supplementary Instructions, or similar instruments provided for in the Conditions of the Contract.
- 3.6 CLOSEOUT ACTIVITIES
 - A. See Section 01 78 00 Closeout Submittals, for closeout submittals.
 - B. Include completed Substitution Request Forms as part of the Project record. Include both approved and rejected Requests.

END OF SECTION

SECTION 01 30 00 - ADMINISTRATIVE REQUIREMENTS

PART 1 GENERAL

- 1.1 SECTION INCLUDES
 - A. General administrative requirements.
 - B. Preconstruction meeting.
 - C. Progress meetings.
 - D. Progress photographs.
 - E. Submittals for review, information, and project closeout.
 - F. Number of copies of submittals.
 - G. Requests for Information (RFI) procedures.
 - H. Submittal procedures.
 - I. Deferred Approvals.

1.2 RELATED REQUIREMENTS

- A. Section 01 32 16 Construction Progress Schedule: Form, content, and administration of schedules.
- B. Section 01 30 00.01 Request for Information Form.
- C. Section 01 60 00 Product Requirements: General product requirements.
- D. Section 01 70 00 Execution and Closeout Requirements: Additional coordination requirements.
- E. Section 01 78 00 Closeout Submittals: Project record documents; operation and maintenance data; warranties and bonds.
- F. Section 01 91 13 General Commissioning Requirements: Additional procedures for submittals relating to commissioning.
 - 1. Where submittals are indicated for review by both Architect and the Commissioning Authority, submit one extra and route to Architect first, for forwarding to the Commissioning Authority.
 - 2. Where submittals are not indicated to be reviewed by Architect, submit directly to the Commissioning Authority; otherwise, the procedures specified in this section apply to commissioning submittals.

1.3 REFERENCE STANDARDS

A. CBSC (CAC) - California Administrative Code (Part 1 of Title 24, California Code of Regulations), Chapter 7; 2013.

1.4 GENERAL ADMINISTRATIVE REQUIREMENTS

- A. Conform to requirements of Section 01 70 00 Execution and Closeout Requirements for coordination of execution of administrative tasks with timing of construction activities.
- B. Make the following types of submittals to Architect:
 - 1. Requests for Information (RFI).
 - 2. Requests for substitution.
 - 3. Shop drawings, product data, and samples.
 - 4. Test and inspection reports.
 - 5. Design data.
 - 6. Manufacturer's instructions and field reports.
 - 7. Applications for payment and change order requests.
 - 8. Progress schedules.
 - 9. Coordination drawings.
 - 10. Correction Punch List and Final Correction Punch List for Substantial Completion.
 - 11. Closeout submittals.

PART 2 PRODUCTS - NOT USED

PART 3 EXECUTION

- 3.1 PRECONSTRUCTION MEETING
 - A. Schedule meeting after Notice of Award.
 - B. Attendance Required:
 - 1. Owner.
 - 2. Architect.
 - 3. Contractor and major subcontractors, including assigned Superintendent and Foreman. Obtain Architect's prior approval of major subcontractors' attendance.
 - 4. Inspector of Record.
 - C. Agenda:
 - 1. Execution of Owner-Contractor Agreement.
 - 2. Submission of executed bonds and insurance certificates.
 - 3. Submission of list of subcontractors, list of products, schedule of values, and progress schedule.
 - 4. Designation of personnel representing the parties to Contract, Owner and Architect.
 - 5. Organizational structure of project and other project characteristics.
 - 6. Procedures and processing of field decisions, submittals, substitutions, applications for payments, proposal request, Change Orders, and Contract closeout procedures.
 - 7. Scheduling, including coordination of work by others.
 - 8. Use of premises by Owner and Contractor.
 - 9. Owner's requirements and partial occupancy.
 - 10. Construction facilities and controls provided by Owner.
 - 11. Temporary utilities considerations.
 - 12. Security and housekeeping procedures.
 - 13. Procedures for testing.
 - 14. Procedures for maintaining record documents.
 - 15. Requirements for start-up of equipment.
 - 16. Inspection and acceptance of equipment put into service during construction period.
 - D. Record minutes and distribute copies within five days after meeting to participants, with copies to Architect, Owner, participants, and those affected by decisions made.

3.2 PROGRESS MEETINGS

- A. Schedule and administer meetings throughout progress of the Work at maximum weekly intervals.
 - 1. Contractor shall assign the same staff members to represent and act on behalf of the Contractor at all progress meetings.
- B. Make arrangements for meetings, prepare agenda with copies for participants, preside at meetings.
- C. Attendance Required:
 - 1. Contractor.
 - 2. Owner.
 - 3. Architect.
 - 4. Special consultants.
 - 5. Contractor's superintendent.
 - 6. Major subcontractors and suppliers.
 - 7. Inspector of Record.
 - 8. Others as appropriate to agenda topics for each meeting.
- D. Agenda:

- 1. Review minutes of previous meetings.
- 2. Review of work progress.
- 3. Field observations, problems, and decisions.
- 4. Identification of problems that impede, or will impede, planned progress.
- 5. Review of submittals schedule and status of submittals.
- 6. Review of RFIs log and status of responses.
- 7. Review of off-site fabrication and delivery schedules.
- 8. Maintenance of progress schedule.
- 9. Corrective measures to regain projected schedules.
- 10. Planned progress during succeeding work period.
- 11. Coordination of projected progress.
- 12. Maintenance of quality and work standards.
- 13. Effect of proposed changes on progress schedule and coordination.
- 14. Other business relating to work.
- E. Record minutes and distribute copies within two days after meeting to participants, with copies to Architect, Owner, participants, and those affected by decisions made.
 - 1. Minutes shall record discussion, actions taken, and issues assigned to parties responsible for resolution.
 - 2. Published minutes will be accepted as properly stating the activities and decision of the Meeting unless they are challenged in writing prior to the next regularly scheduled Progress Meeting.
 - a. Persons challenging published minutes are responsible to reproduce and distribute copies of challenge to all recipients of the particular minutes being challenged.
 - b. Settle any challenges as priority items of 'old business' at the next regularly scheduled meeting.
- 3.3 CONSTRUCTION PROGRESS SCHEDULE SEE SECTION 01 32 16

3.4 PROGRESS PHOTOGRAPHS

- A. Submit photographs with each application for payment, taken not more than 5 days maximum prior to submission of application for payment.
- B. Photography Type: Digital; electronic files.
- C. Provide photographs of site and construction throughout progress of work produced by an experienced photographer, acceptable to Architect.
- D. In addition to periodic, recurring views, take photographs of each of the following events:
 - 1. Completion of site clearing.
 - 2. Structural framing in progress and upon completion.
 - 3. Final completion, minimum of ten (10) photos.
- E. Take photographs as evidence of existing project conditions as follows:
 - 1. Interior views: Two.
 - 2. Exterior views: Three.
- F. Views:
 - 1. Provide non-aerial photographs from four cardinal views at each specified time, until date of Substantial Completion.
 - 2. Consult with Architect for instructions on views required.
 - 3. Provide factual presentation.
 - 4. Provide correct exposure and focus, high resolution and sharpness, maximum depth of field, and minimum distortion.
- G. Digital Photographs: 24 bit color, minimum resolution of 1024 by 768, in JPG format; provide files unaltered by photo editing software.
 - 1. Delivery Medium: Via email.
 - 2. File Naming: Include project identification, date and time of view, and view identification, including orientation.

- 3. PDF File: Assemble all photos into printable pages in PDF format, with 2 to 3 photos per page, each photo labeled with file name; one PDF file per submittal.
- 4. Hard Copy: Printed hardcopy (grayscale) of PDF file and point of view sketch.

3.5 REQUESTS FOR INFORMATION (RFI)

- A. Definition: A request seeking one of the following:
 - 1. An interpretation, amplification, or clarification of some requirement of Contract Documents arising from inability to determine from them the exact material, process, or system to be installed; or when the elements of construction are required to occupy the same space (interference); or when an item of work is described differently at more than one place in the Contract Documents.
 - 2. A resolution to an issue which has arisen due to field conditions and affects design intent.
- B. Preparation: Prepare an RFI immediately upon discovery of a need for interpretation of the Contract Documents. Failure to submit a RFI in a timely manner is not a legitimate cause for claiming additional costs or delays in execution of the work.
 - 1. Prepare a separate RFI for each specific item.
 - a. Review, coordinate, and comment on requests originating with subcontractors and/or materials suppliers. RFIs submitted by subcontractors or suppliers will not be reviewed.
 - b. Do not forward requests which solely require internal coordination between subcontractors.
 - 2. Prepare in a format and with content acceptable to Owner.
 - a. Use form indicated in the Project Manual for this purpose or other agreed upon form.
 - 3. Combine RFI and its attachments into a single electronic file. PDF format is preferred.
- C. Reason for the RFI: Prior to initiation of an RFI, carefully study all Contract Documents to confirm that information sufficient for their interpretation is definitely not included.
 - 1. Include in each request Contractor's signature attesting to good faith effort to determine from the Contract Documents information requiring interpretation.
 - 2. Unacceptable Uses for RFIs: Do not use RFIs to request the following::
 - a. Approval of submittals (use procedures specified elsewhere in this section).
 - b. Approval of substitutions (see Section 01 60 00 Product Requirements)
 - c. Changes that entail change in Contract Time and Contract Sum (comply with provisions of the Conditions of the Contract).
 - d. Different methods of performing work than those indicated in the Contract Drawings and Specifications (comply with provisions of the Conditions of the Contract).
 - 3. Improper RFIs: Requests not prepared in conformance to requirements of this section, and/or missing key information required to render an actionable response. They will be returned without a response.
 - 4. Frivolous RFIs: Requests regarding information that is clearly indicated on, or reasonably inferable from, the Contract Documents, with no additional input required to clarify the question. They will be returned without a response.
 - a. The Owner reserves the right to assess the Contractor for the costs (on time-and-materials basis) incurred by the Architect, and any of its consultants, due to processing of such RFIs.
- D. Content: Include identifiers necessary for tracking the status of each RFI, and information necessary to provide an actionable response.
 - 1. Official Project name and number, and any additional required identifiers established in Contract Documents.
 - 2. Owner's, Architect's, and Contractor's names.
 - 3. Discrete and consecutive RFI number, and descriptive subject/title.
 - 4. Issue date, and requested reply date.
 - 5. Reference to particular Contract Document(s) requiring additional information/interpretation. Identify pertinent drawing and detail number and/or specification section number, title, and paragraph(s).
 - 6. Annotations: Field dimensions and/or description of conditions which have engendered the request.

- 7. Contractor's suggested resolution: A written and/or a graphic solution, to scale, is required in cases where clarification of coordination issues is involved, for example; routing, clearances, and/or specific locations of work shown diagrammatically in Contract Documents. If applicable, state the likely impact of the suggested resolution on Contract Time or the Contract Sum.
- 8. RFI's shall have check boxes at the bottom marked "Materially Alters the Work" or "Does Not Materially Alter the Work."
- E. Attachments: Include sketches, coordination drawings, descriptions, photos, submittals, and other information necessary to substantiate the reason for the request.
- F. RFI Log: Prepare and maintain a tabular log of RFIs for the duration of the project.
 - 1. Indicate current status of every RFI. Update log promptly and on a regular basis.
 - 2. Note dates of when each request is made, and when a response is received.
 - 3. Highlight items requiring priority or expedited response.
 - 4. Highlight items for which a timely response has not been received to date.
 - 5. Identify and include improper or frivolous RFIs.
- G. Review Time: Architect will respond and return RFIs to Contractor within seven calendar days of receipt. For the purpose of establishing the start of the mandated response period, RFIs received after 3:00 PM on Mondays through Thursdays will be considered as having been received on the following regular working day; RFIs received after 9:00 AM on Fridays will be considered as having been received on the following Monday at 8:00 AM.
 - 1. Response period may be shortened or lengthened for specific items, subject to mutual agreement, and recorded in a timely manner in progress meeting minutes.
- H. Responses: Content of answered RFIs will not constitute in any manner a directive or authorization to perform extra work or delay the project. If in Contractor's belief it is likely to lead to a change to Contract Sum or Contract Time, promptly issue a notice to this effect, and follow up with an appropriate Change Order request to Owner.
 - 1. Response may include a request for additional information, in which case the original RFI will be deemed as having been answered, and an amended one is to be issued forthwith. Identify the amended RFI with an R suffix to the original number.
 - 2. Do not extend applicability of a response to specific item to encompass other similar conditions, unless specifically so noted in the response.
 - 3. Upon receipt of a response, promptly review and distribute it to all affected parties, and update the RFI Log.
 - 4. Notify Architect within seven calendar days if an additional or corrected response is required by submitting an amended version of the original RFI, identified as specified above.

3.6 SUBMITTAL SCHEDULE

- A. Submit to Architect for review a schedule for submittals in tabular format.
 - 1. Submit at the same time as the preliminary schedule specified in Section 01 32 16 Construction Progress Schedule.
 - 2. Coordinate with Contractor's construction schedule and schedule of values.
 - 3. Format schedule to allow tracking of status of submittals throughout duration of construction.
 - 4. Arrange information to include scheduled date for initial submittal, specification number and title, submittal category (for review or for information), description of item of work covered, and role and name of subcontractor.
 - 5. Account for time required for preparation, review, manufacturing, fabrication and delivery when establishing submittal delivery and review deadline dates.
 - a. For assemblies, equipment, systems comprised of multiple components and/or requiring detailed coordination with other work, allow for additional time to make corrections or revisions to initial submittals, and time for their review.

3.7 SUBMITTALS FOR REVIEW

- A. When the following are specified in individual sections, submit them for review:
 - 1. Product data.

- 2. Shop drawings.
- 3. Samples for selection.
 - a. Using manufacturer's standard sample delivery system, submit two sets of samples of colors and finishes, textures, and patterns from the manufacturer's full range; include custom finish information if specified.
- 4. Samples for verification.
- B. Submit to Architect for review for the limited purpose of checking for conformance with information given and the design concept expressed in the contract documents.
 - 1. Architect's review of submittals shall not relieve Contractor of compliance with the Contract Documents, or of responsibility for deviations from Contract Documents.
 - 2. In review of submittals, Architect will not provide dimensions or elevations for field conditions, or for conditions available from a detailed review of documents.
- C. Samples will be reviewed for aesthetic, color, or finish selection.
- D. Include identification on each sample for verification, with full Project information.
- E. After review, distribute in accordance with SUBMITTAL PROCEDURES article below and for record documents purposes described in Section 01 78 00 Closeout Submittals.

3.8 SUBMITTALS FOR INFORMATION

- A. When the following are specified in individual sections, submit them for information:
 - 1. Design data.
 - 2. Sustainability certification related submittals and reports.
 - 3. Certificates.
 - a. Certificates may be recent or based on previous test results, but must address current regulatory requirements and be acceptable to Architect.
 - 4. Test reports.
 - 5. Inspection reports.
 - 6. Manufacturer's instructions.
 - 7. Manufacturer's field reports.
 - 8. Other types indicated.
- B. Submit for Architect's knowledge as contract administrator or for Owner.

3.9 SUBMITTALS FOR PROJECT CLOSEOUT

- A. Submit Correction Punch List for Substantial Completion.
- B. Submit Final Correction Punch List for Substantial Completion.
- C. When the following are specified in individual sections, submit them at project closeout in conformance to requirements of Section 01 78 00 Closeout Submittals:
 - 1. Project record documents.
 - 2. Operation and maintenance data.
 - 3. Warranties.
 - 4. Bonds.
 - 5. Other types as indicated.
- D. Submit for Owner's benefit during and after project completion.

3.10 NUMBER OF COPIES OF SUBMITTALS

- A. Electronic Documents: Submit one electronic copy in PDF format; an electronically-marked up file will be returned. Create PDFs at native size and right-side up; illegible files will be rejected.
- B. Samples: Submit the number specified in individual specification sections; one of which will be retained by Architect. If a quantity is not specified in an individual section, submit the number required for Contractor's use, plus one for Architect and one for Owner. Architect will not review more than six samples.
 - 1. Retained samples will not be returned to Contractor unless specifically so stated.

3.11 SUBMITTAL PROCEDURES

- A. General Requirements:
 - 1. Maintain a complete and current submittal log, indicating status of all submittals and re-submittals. Provide summary of submittal status at pay request meeting.
 - 2. Use a single transmittal for related items in a specification section.
 - Do not combine data from more than one specification section or drawing component into a single submittal. Such submittals will be returned without action for re-submittal in the proper form.
 - 4. Submit separate packages of submittals for review and submittals for information, when included in the same specification section.
 - 5. Transmit using approved form.
 - 6. Sequentially identify each item. For revised submittals use original number and a sequential numerical suffix.
 - 7. Identify: Project; Contractor; subcontractor or supplier; pertinent drawing and detail number; and specification section number and article/paragraph, as appropriate on each copy.
 - 8. Apply Contractor's stamp, signed or initialed certifying that review, approval, verification of products required, field dimensions, adjacent construction work, and coordination of information is in accordance with the requirements of the work and Contract Documents.
 - a. Submittals from sources other than the Contractor, or without Contractor's stamp will not be acknowledged, reviewed, or returned.
 - 9. Deliver each submittal on date noted in submittal schedule, unless an earlier date has been agreed to by all affected parties, and is of the benefit to the project.
 - a. Send submittals in electronic format via email to Architect, except deliver samples to Architect at business address.
 - b. Upload submittals in electronic form to Electronic Document Submittal Service website when this type of service is used.
 - 10. Schedule submittals to expedite the Project, and coordinate submission of related items.
 - a. Failure to make timely submittals will not be a reason for extension of Contract time.
 - b. Where no time period for submittals is established, provide submittals no later than the midpoint between notice of award and scheduled start date of the work related to the submittal. Where submittals are not submitted within specified limits, the Architect may delay certification of Payment Request until submittals are received.
 - 1) Asphalt Paving, including mix designs: No later than 14 days after Notice to Proceed.
 - 2) Concrete, including Mix Designs: Submit no later than 14 days after Notice to Proceed.
 - c. For each submittal for review, allow 15 days excluding delivery time to and from the Contractor.
 - d. For sequential reviews involving Architect's consultants, Owner, or another affected party, allow an additional 7 days.
 - 11. Identify variations from Contract Documents and product or system limitations that may be detrimental to successful performance of the completed work.
 - a. Clearly identify, with bold clouding or other graphic notation, all deviations from Contract Documents. Provide boxed note at clouded deviation specifically requesting approval of proposed change. Provide documentation of proposed change, including additional graphics and data as requested by Architect.
 - 12. Provide space for Contractor and Architect review stamps.
 - 13. When revised for resubmission, identify all changes made since previous submission.
 - 14. Distribute reviewed submittals. Instruct parties to promptly report inability to comply with requirements.
 - 15. Incomplete submittals will not be reviewed, unless they are partial submittals for distinct portion(s) of the work, and have received prior approval for their use.
 - 16. Submittals not requested will be recognized, and will be returned "Not Reviewed",
- B. Product Data Procedures:
 - 1. Submit only information required by individual specification sections.

- 2. Collect required information into a single submittal.
- 3. Do not submit (Material) Safety Data Sheets for materials or products.
- 4. Proposed Products: Mark each copy to identify applicable products, models, options, and other data. Indicate material or product conforms to or exceeds specified requirements. Submit supporting reference data, affidavits, and certifications as appropriate. Supplement manufacturer's standard data to provide information unique to this Project. Mark out items that are not applicable to the project.
 - a. Where specified in individual sections, submit complete list of major products proposed for use, with name of manufacturer, trade name, and model number for each product and supporting product data.
 - b. For products specified only by reference standards, give manufacturer, trade name, model or catalog designation, and reference standards.
- 5. Identify conflicts between manufacturer's instructions and Contract Documents.
- C. Shop Drawing Procedures:
 - 1. Shop drawings shall be executed per CAC Section 7-126, including submittal and schedule.
 - 2. Prepare accurate, drawn-to-scale, original shop drawing documentation by interpreting the Contract Documents and coordinating related work.
 - 3. Do not reproduce the Contract Documents to create shop drawings.
 - 4. Electronic Documents for Contractor's Use:
 - a. At Architect's sole discretion, Architect will provide a file containing selected electronic backgrounds for Contractor's use in shop drawing preparation.
 - b. Contractor shall sign Architect-provided release form regarding such electronic file information.
 - c. Electronic files will be provided in AutoCAD format, in the Architect's current version, as background views only, without dimensions, doors, notes, or similar information. No seals, title blocks, or other approval stamps will be included on backgrounds.
 - d. Unless otherwise established, and at Architect's sole discretion, only plan and sections views of architectural, structural, mechanical, and electrical documents will be provided. Under no circumstances will the complete project AutoCAD file be provided.
 - e. The Architect will provide a single CD-based file or appropriate file transfer containing backgrounds for all disciplines for the Contractor's use. Contractor shall be responsible for distribution of background files to subcontractors and vendors.
 - f. The Architect will prepare a cost for preparation of electronic file package. If the Contractor agrees to such cost, the cost will be processed as a deductive change order to the contract.
 - 5. Generic, non-project-specific information submitted as shop drawings do not meet the requirements for shop drawings.
- D. Samples Procedures:
 - 1. Transmit related items together as single package.
 - 2. Identify each item to allow review for applicability in relation to shop drawings showing installation locations.
 - 3. Include with transmittal high-resolution image files of samples to facilitate electronic review and approval. Provide separate submittal page for each item image.

3.12 SUBMITTAL REVIEW

- A. Submittals for Review: Architect will review each submittal, and approve, or take other appropriate action.
- B. Submittals for Information: Architect will acknowledge receipt and review. See below for actions to be taken.
- C. Architect's actions will be reflected by marking each returned submittal using virtual stamp on electronic submittals.
 - 1. Notations may be made directly on submitted items and/or listed on appended Submittal Review cover sheet.
- D. Architect's and his consultants' actions on items submitted for review:

- 1. Authorizing purchasing, fabrication, delivery, and installation:
 - a. "Approved", or language with same legal meaning.
 - b. "Approved as Noted, Resubmission not required", or language with same legal meaning.
 1) At Contractor's option, submit corrected item, with review notations acknowledged
 - and incorporated.
 - c. "Approved as Noted, Resubmit for Record", or language with same legal meaning.
 - 1) Resubmit corrected item, with review notations acknowledged and incorporated. Resubmit separately, or as part of project record documents.
- 2. Not Authorizing fabrication, delivery, and installation:
 - a. "Revise and Resubmit".
 - 1) Resubmit revised item, with review notations acknowledged and incorporated.
 - 2) Non-responsive resubmittals may be rejected.
 - b. "Rejected".
 - 1) Submit item complying with requirements of Contract Documents.
- E. Architect's and his consultants' actions on items submitted for information:
 - 1. Items for which no action was taken:
 - a. "Received" to notify the Contractor that the submittal has been received for record only.
 - 2. Items for which action was taken:
 - a. "Reviewed" no further action is required from Contractor.

3.13 DEFERRED APPROVALS

- A. Where shown on drawings and as specified in individual sections, submit documentation as required to obtain OSHPD approval of all deferred approval work.
- B. Submit deferred approval documentation under the provisions of this section and as specified in the respective individual section.
 - 1. Comply with the requirements of Section 7-153(d), Chapter 7, Part 1, Title 24, CCR.
 - Submit documentation bearing seal and signature of applicable responsible engineer licensed to practice in the State in which the Project is located. All structural deferred approvals shall be prepared by a Structural Engineer licensed to practice in the State in which the Project is located.
 - a. Provide Deferred Approval Number and OSHPD Project Number on the cover of each submittal.
 - b. Provide document format with sufficient space for Architect and OSHPD agency review stamps.
 - c. In accordance with Section 7-126, Part 1, Title 24, CCR, Architect will review and mark with notation indicating that the deferred submittal documents have been reviewed and that they have been found to be in general conformance with the design of the project.
 - 3. Clearly identify all deviations and proposed alternates to materials and systems shown on drawings and specified in this Project Manual.
 - 4. Drawings: Produce drawings on substantial bond paper using media of archive quality. Indicate dimensional locations of the various parts of the construction, sizes and type of members, connections, attachments, and openings.
 - 5. Specifications: Provide specifications in an approved format illustrating materials and systems proposed for use in design.
 - 6. Structural Calculations: Where required, produce calculations in booklet form, 8-1/2 x 11 inch size, minimum of three wet signed and sealed copies.
 - 7. Provide sufficient information with respect to design criteria, analysis methodology and material capacity to adequately evaluate documentation for compliance with applicable sections of applicable code.
 - 8. Where required by Section 7-151, provide verified reports for work done under deferred approvals.
- C. Deferred Approval Submittal Procedure:
 - 1. Submit completed documentation in accordance with scheduling criteria where defined in contract documents.

- 2. The documents will be reviewed by Architect for consistency with specified criteria. If necessary, Architect will return submittal to Contractor for corrections. Any corrections, if any, shall be made by Contractor and returned to Architect within seven days.
- 3. No contract time extensions will be granted for document modification caused by nonconformance with specified criteria.
- 4. Architect will submit documents to OSHPD reviewing authority for review and comment. Architect will return documents to Contractor following OSHPD review Where required, Contractor shall make all changes or corrections required by OSHPD reviewing authority. Contractor shall pay all fees and provide all coordination and management necessary to obtain approval, including all meetings, correspondence and communications. Once corrections are made, Contractor shall return to Architect for resubmittal.
- 5. After receiving OSHPD final approval, Architect will furnish Contractor one complete set of OSHPD approved documents for Contractor's use in construction.
- D. Samples: Provide samples as specified in each Section.
- E. Manufacturer's Data: Provide descriptive data on all accessory items and operation.
- F. Installation Data: Submit descriptive data on installation procedures.

END OF SECTION

SECTION 01 30 00.01 - REQUEST FOR INFORMATION FORM

CONTRACTOR: TO: CGA, ATTN:			REQUEST NO.: SECTION:		
Disciplines Impacted:	[] Structural [] Civil	[] Mechanical [] Landscape	[] Electrical [] Foodservice	[] Architectural	
Reference: Drawing(s)	••	Spec Section(s)		Other	
Please clarify or provid	de the following i	information:			
Possible Cost Impact: Possible Time Impact:	[] Increase [] Increase	[] Decrease [] Decrease	[] No Change [] No Change	[] Unknown [] Unknown	
This information is required as soon as possible, but no later than		[] Priority Attention Required			
			Copies to:		
Contractor's Representa	ative				
Architect's Response:			Date:		
			Copies to:		
Cuningham Group Repr	esentative				
	E	ND OF SECTION	1		
SECTION 01 32 16 - CONSTRUCTION PROGRESS SCHEDULE

PART 1 GENERAL

- 1.1 SECTION INCLUDES
 - A. Preliminary schedule.
 - B. Construction progress schedule, with network analysis diagrams and reports.
 - C. Short Interval Schedules.

1.2 REFERENCE STANDARDS

- A. AGC (CPSM) Construction Planning and Scheduling Manual; 2004.
- B. M-H (CPM) CPM in Construction Management Project Management with CPM; O'Brien; 2006.

1.3 SUBMITTALS

- A. Within 30 days after date established in Notice to Proceed, submit preliminary schedule.
- B. If preliminary schedule requires revision after review, submit revised schedule within five days after joint review.
- C. Submit updated schedule every 30 days.
- D. Submit Short Interval Schedule at each construction progress meeting
- E. Final CPM Schedule at Completion of Contract: At the completion of the contract and prior to the release of any bonds or final payment by the Owner, the Contractor shall submit to the Owner, with copy to the Architect for approval, a final CPM schedule, showing the actual job history.

1.4 QUALITY ASSURANCE

A. Scheduler: Contractor's personnel or specialist Consultant specializing in CPM scheduling with one years minimum experience in scheduling construction work of a complexity comparable to this Project, and having use of computer facilities capable of delivering a detailed graphic printout within 48 hours of request.

1.5 SCHEDULE FORMAT

- A. Listings: In chronological order according to the start date for each activity. Identify each activity with the applicable specification section number.
- B. Diagram Sheet Size: 24 x 36 inches .
- C. Sheet Size: Multiples of 8-1/2 x 11 inches.
- D. Scale and Spacing: To allow for notations and revisions.

1.6 EARLY COMPLETION OF PROJECT

- A. In the event the Contractor wishes to complete work earlier than the specified contract completion date, and the Owner and/or Architect approve such earlier completion, the following conditions apply:
 - 1. The contract completion date shall not be amended by the Owner's approval of Contractor's proposed earlier completion date.
 - 2. Contractor shall not, under any circumstances, receive additional compensation from the Owner for indirect, general, administrative or other forms of overhead costs, for the period between the time or earlier completion proposed by the Contractor and the official contract completion date.

1.7 TIME EXTENSION REQUESTS

A. The monthly Updated construction schedules submitted by the Contractor shall not show a completion date later than the Contract Time, subject to any time extensions granted by the Owner.

- B. If the Contractor believes that it is entitled to an extension of the Contract Time due to a Change Order of delay/disruption, the Contractor, within ten (10) workdays of the qualifying event(s), shall submit:
 - 1. A Time Extension Request notification letter with a detailed narrative justifying the time extension requested;
 - 2. Fragmentary Network (Fragnet) Analysis of the delay impact, identifying all schedule activities that are impacted by the subject occurrence;
 - 3. Tabular report of the qualifying update of the CPM schedule the analysis is based on; and
 - 4. A schedule analysis entitled "Time Extension Request Schedule" that incorporates the findings of the Fragnet analysis into the latest (qualifying) update of the CPM schedule;
 - 5. The Fragnet and time extension request schedules shall be time scaled, utilizing a computer generated network analysis unless otherwise approved by the Owner.
- C. The time extension request shall forecast the adjusted project completion date and impact to any intermediate milestones.
- D. Float is not for the exclusive use or benefit of either the Owner or ContractorContractor. Contract time extensions shall be granted only to the extent the equitable time adjustments to the activity or activities affected by a change order of delay/disruption exceed the total float of a critical activity (or path) and extend the Contract Completion Date.
- E. When Contractor does not submit a Time Extension Request within ten working days, it is mutually agreed that the particular Change Order (including Proposed Change Order) or delay/disruption does not impact the construction schedule and hence no time extension is due to the Contractor.
- F. The Owner shall not have any obligation to consider any time extension request unless the requirements of the contract documents are complied with. The Owner shall not be responsible or liable to the Contractor for any constructive acceleration due to failure of the Owner to grant time extensions under the terms of this contract, should Contractor fail to comply with the time extension submission and justification requirements stated herein.

PART 2 PRODUCTS - NOT USED

PART 3 EXECUTION

- 3.1 PRELIMINARY SCHEDULE
 - A. Prepare preliminary schedule in the form of a preliminary network diagram.

3.2 CONTENT

- A. Show complete sequence of construction by activity, with dates for beginning and completion of each element of construction.
- B. Identify each item by specification section number.
- C. Identify work of separate stages and other logically grouped activities.
- D. Provide sub-schedules to define critical portions of the entire schedule.
- E. Show accumulated percentage of completion of each item, and total percentage of Work completed, as of the first day of each month.
- F. Provide separate schedule of submittal dates for shop drawings, product data, and samples, owner-furnished products, and dates reviewed submittals will be required from Architect. Indicate decision dates for selection of finishes.
- G. Indicate delivery dates for owner-furnished products.
- H. Coordinate content with schedule of values specified in Section 01 20 00 Price and Payment Procedures.
- I. Provide legend for symbols and abbreviations used.

3.3 NETWORK ANALYSIS

- A. Prepare network analysis diagrams and supporting mathematical analyses using the Critical Path Method.
- B. Illustrate order and interdependence of activities and sequence of work; how start of a given activity depends on completion of preceding activities, and how completion of the activity may restrain start of subsequent activities.
- C. Mathematical Analysis: Tabulate each activity of detailed network diagrams, using calendar dates, and identify for each activity:
 - 1. Preceding and following event numbers.
 - 2. Activity description and area of work.
 - 3. Estimated duration of activity, in maximum 20 day intervals.
 - a. Exception: Fabrication and procurement activities and other activities approved by Owner.
 - b. Activity durations shall be the total number of actual days required to perform the work, including consideration of weather impacts.
 - 4. Earliest start date.
 - 5. Earliest finish date.
 - 6. Actual start date.
 - 7. Actual finish date.
 - 8. Latest start date.
 - 9. Latest finish date.
 - 10. Total and free float; float time shall accrue to Owner and to Owner's benefit.
 - a. Float time is defined as the amount of time between the earliest start date and the latest start date of the earliest finish date and the latest finish date of a scheduled activity.
 - b. Float time is not for the exclusive use or benefit of either the Contractor or the Owner. The Contractor acknowledges and agrees that actual delays affecting path of activities containing float, will not have any effect upon the Contract completion date, provided that the actual delay does not exceed the float time associated with those activities.
 - 11. Monetary value of activity, keyed to Schedule of Values (cost loading). Cost loading should cumulatively equal the Contract Sum. Mobilization, bond and insurance costs may be shown separately; however, general requirements costs, such as overhead and profit, shall be prorated through all activities.
 - 12. Percentage of activity completed.
 - 13. Responsibility.
 - a. The Contractor shall identify the labor requirement anticipated to complete each work activity. The labor requirement shall be assigned to each schedule activity requiring resources using the resource management capabilities of the scheduling software. For activities involving a number of trades, a written summary of manpower allocation by trade shall be submitted with the schedule.
- D. Codes: Activities shall be coded by Responsibility and Area of work. Area codes shall distinguish construction activities related to individual buildings or areas within buildings and site work.
- E. Analysis Program: Capable of accepting revised completion dates, and recomputation of all dates and float.
 - 1. Contractor shall use Primavera Project Planner software version 5.0 or better or have the means of providing the Owner's Representative with files on CD-ROM Windows formatted floppy disks, in a form that can be completely restored into Primavera without requiring the use of a conversion program or utilizing other software.
- F. Required Reports: List activities in sorts or groups:
 - 1. By preceding work item or event number from lowest to highest.
 - 2. By amount of float, then in order of early start.
 - 3. Contractor's periodic payment request sorted by Schedule of Values listings.
 - 4. Listing of basic input data that generates the report.
 - 5. Listing of activities on the critical path.

3.4 REVIEW AND EVALUATION OF SCHEDULE

- A. Participate in joint review and evaluation of schedule with Owner and Architect at each submittal.
- B. Evaluate project status to determine work behind schedule and work ahead of schedule.
- C. After review, revise as necessary as result of review, and resubmit within five days.
- D. Upon acceptance by the Owner, the approved preliminary schedule will become the project Baseline Contract Schedule. The Baseline Schedule shall not be revised without written approval of the Owner.
- E. The Owner shall have the right to withhold progress payments from the Contractor at its discretion if the Contractor fails to finalize and obtain approval for the Baseline Contract Schedule within the prescribed period.
- F. Failure of the Contractor to incorporate all elements of work required for the performance of the contract or any inaccuracy in the Baseline Contract Schedule shall not excuse the Contractor from performing all work required for a completed project within the specified contract time period, notwithstanding the Owner's acceptance of the Baseline Contract Schedule.

3.5 UPDATING SCHEDULE

- A. Submit updated schedules on a monthly basis. The schedule shall be submitted no later than five workdays from the status date.
- B. Maintain schedules to record actual start and finish dates of completed activities. Updating the schedule to reflect actual progress shall not be considered to be a revision of the Schedule.
- C. Indicate progress of each activity to date of revision, with projected completion date of each activity.
- D. Update diagrams to graphically depict current status of Work, including estimated percentages of completion for each activity in progress.
- E. Identify errors, if any, and activities modified since previous submittal, major changes in Work, and other identifiable changes.
- F. Indicate changes required to maintain Date of Substantial Completion.
- G. Submit reports required to support recommended changes.
- H. Provide narrative report to define problem areas, anticipated delays, and impact on the schedule. Report corrective action taken or proposed and its effect including the effects of changes on schedules of separate contractors. Reports shall also include:
 - 1. Bar chart showing the previous month's work and a projected three month "look-ahead" of the work. The data included on the bar chart shall consist of the activity number, activity description, early start and finish date, original duration, remaining duration, percent complete, resource units per day, and total float.
- I. The Owner shall have the right to withhold progress payments from the Contractor at its discretion until the required monthly updates are submitted and approved.
- J. If, during the process of schedule updating, it becomes apparent that the Construction Schedule no longer represents the actual prosecution and progress of the work, the Owner may require the Contractor to submit a revised schedule at no additional cost to the Owner. The Owner shall have the right to withhold progress payments from the Contractor at its discretion, if the Contractor fails to submit a timely, detailed and workable recovery schedule.

3.6 DISTRIBUTION OF SCHEDULE

- A. Distribute digital and hard copies of preliminary and updated schedules to Contractor's project site file, to Subcontractors, suppliers, Architect, Owner, and other concerned parties in both published and native file formats.
- B. Instruct recipients to promptly report, in writing, problems anticipated by projections indicated in schedules.

3.7 SHORT INTERVAL SCHEDULES

- A. Short Interval Schedules (SIS) shall be submitted to the Owner with copy to the Architect during construction progress meetings.
- B. The SIS interval shall be three weeks and shall include the past week, the week submitted and the week thereafter; the SIS may be hand generated.
- C. The SIS shall be based on the Contract Schedule and shall be in bar chart form. The SIS shall be in sufficient detail to evaluate the Contractor's performance in the preceding week and planned progress in upcoming weeks vis a vis the Contract Schedule and Updates thereof.
- D. Following review and revisions as necessary, the SIS will be accepted by the Owner.

SECTION 01 35 53 - SECURITY PROCEDURES

PART 1 GENERAL

- 1.1 SECTION INCLUDES
 - A. Security measures including formal security program, entry control, personnel identification, and miscellaneous restrictions.

1.2 RELATED REQUIREMENTS

- A. Section 01 10 00 Summary: use of premises and occupancy.
- B. Section 01 50 00 Temporary Facilities and Controls: Temporary lighting.

1.3 SECURITY PROGRAM

- A. Protect Work, existing premises and Owner's operations from theft, vandalism, and unauthorized entry.
- B. Initiate program in coordination with Owner's existing security system at project mobilization.
- C. Maintain program throughout construction period until Owner occupancy.

1.4 ENTRY CONTROL

- A. Restrict entrance of persons and vehicles into Project site and existing facilities.
- B. Allow entrance only to authorized persons with proper identification.
- C. Maintain log of workers and visitors, make available to Owner on request.
- D. Coordinate access of Owner's personnel to site in coordination with Owner's security forces.

1.5 PERSONNEL IDENTIFICATION

- A. Provide identification badge to each person authorized to enter premises.
- B. All Contractor's staff, subcontractors, and suppliers shall wear badges at all times. In addition, wear orange safety vests or other approved shirt design at all times.
- C. Badge To Include: Personal photograph, name, assigned number, expiration date and employer.
- D. Require return of badges at expiration of their employment on the Work.

1.6 RESTRICTIONS

- A. Do not enter patient or staff rooms at any time without approval of staff.
- B. All Contractor's staff, subcontractors, and suppliers shall avoid interaction, contact, and communication with staff and patients. Under no circumstances shall Contractor's staff, subcontractors, and suppliers be in contact with the aforementioned without Owner staff present.
- C. All work, including work of subcontractors, shall be conducted under the observation of the Contractor's supervisory personnel.
- D. Remove all radio or other music-generating devices operated sufficiently loud so as to be objectionable, as determined solely by the Owner or Owner's operations.
- E. Dogs and other pets are not permitted on site.
- F. No smoking or use of any tobacco products is permitted on Owner's property.
- G. All Contractor staff, subcontractors, and suppliers shall present a professional and civil manner to staff and the Public. Use of language or behavior judged offensive, obscene, or suggestive by the Owner is not permitted. Clothing that is suggestive, is marked with images that suggest or promote drug, alcohol, or tobacco use, or represents behavior judged offensive, obscene, or suggestive by the Owner is not permitted. Immediately remove from site any Contractor personnel exhibiting such behavior.
- H. Persons under the influence of or engaged in the use of drugs or controlled substances shall be immediately removed from site.

I. Use of alcoholic beverages is prohibited on site. Persons under the influence of or engaged in the use of alcoholic beverages shall be immediately removed from site.

PART 2 PRODUCTS - NOT USED

PART 3 EXECUTION - NOT USED

SECTION 01 40 00 - QUALITY REQUIREMENTS

PART 1 GENERAL

- 1.1 SECTION INCLUDES
 - A. Submittals.
 - B. Quality assurance.
 - C. References and standards.
 - D. Testing and inspection agencies and services.
 - E. Control of installation.
 - F. Tolerances.
 - G. Manufacturers' field services.
 - H. Defect Assessment.
- 1.2 RELATED REQUIREMENTS
 - A. Section 01 30 00 Administrative Requirements: Submittal procedures.
 - B. Section 01 42 16 Definitions.
 - C. Section 01 45 33 Code-Required Special Inspections.
 - D. Section 01 60 00 Product Requirements: Requirements for material and product quality.

1.3 REFERENCE STANDARDS

- A. ASTM C1021 Standard Practice for Laboratories Engaged in Testing of Building Sealants; 2008 (Reapproved 2014).
- B. ASTM C1077 Standard Practice for Laboratories Testing Concrete and Concrete Aggregates for Use in Construction and Criteria for Laboratory Evaluation; 2014.
- C. ASTM C1093 Standard Practice for Accreditation of Testing Agencies for Masonry; 2013.
- D. ASTM D3740 Standard Practice for Minimum Requirements for Agencies Engaged in the Testing and/or Inspection of Soil and Rock as Used in Engineering Design and Construction; 2012a.
- E. ASTM E329 Standard Specification for Agencies Engaged in Construction Inspection and/or Testing; 2014a.
- F. ASTM E543 Standard Specification for Agencies Performing Nondestructive Testing; 2013.
- G. ICC/CBSC (CBC) California Building Code; 2016.
- H. CSI/CSC MF Masterformat; 2014.

1.4 SUBMITTALS

- A. See Section 01 30 00 Administrative Requirements, for submittal procedures.
- B. Design Data: Submit for Architect's knowledge as contract administrator for the limited purpose of assessing conformance with information given and the design concept expressed in the contract documents, or for Owner's information.
- C. Test Reports: After each test/inspection, promptly submit two copies of report to Architect and to Contractor.
 - 1. Include:
 - a. Date issued.
 - b. Project title and number.
 - c. Name of inspector.
 - d. Date and time of sampling or inspection.
 - e. Identification of product and specifications section.
 - f. Location in the Project.

- g. Type of test/inspection.
- h. Date of test/inspection.
- i. Results of test/inspection.
- j. Conformance with Contract Documents.
- k. When requested by Architect, provide interpretation of results.
- 2. Test report submittals are for Architect's knowledge as contract administrator for the limited purpose of assessing conformance with information given and the design concept expressed in the contract documents, or for Owner's information.
- D. Certificates: When specified in individual specification sections, submit certification by the manufacturer and Contractor or installation/application subcontractor to Architect, in quantities specified for Product Data.
 - 1. Indicate material or product conforms to or exceeds specified requirements. Submit supporting reference data, affidavits, and certifications as appropriate.
 - 2. Certificates may be recent or previous test results on material or product, but must be acceptable to Architect.
- E. Manufacturer's Instructions: When specified in individual specification sections, submit printed instructions for delivery, storage, assembly, installation, start-up, adjusting, and finishing, for the Owner's information. Indicate special procedures, perimeter conditions requiring special attention, and special environmental criteria required for application or installation.
- F. Manufacturer's Field Reports: Submit reports for Architect's benefit as contract administrator or for Owner.
 - 1. Submit report in duplicate within five days of observation to Architect for information.
 - 2. Submit for information for the limited purpose of assessing conformance with information given and the design concept expressed in the contract documents.
- G. Erection Drawings: Submit drawings for Architect's benefit as contract administrator or for Owner.
 - 1. Submit for information for the limited purpose of assessing conformance with information given and the design concept expressed in the contract documents.
 - 2. Data indicating inappropriate or unacceptable Work may be subject to action by Architect or Owner.

1.5 QUALITY ASSURANCE

- A. Testing Agency Qualifications:
 - 1. Prior to start of Work, submit agency name, address, and telephone number, and names of full time registered Engineer and responsible officer.

1.6 REFERENCES AND STANDARDS

- A. For products and workmanship specified by reference to a document or documents not included in the Project Manual, also referred to as reference standards, comply with requirements of the standard, except when more rigid requirements are specified or are required by applicable codes.
 - Unless the Contract Documents or applicable regulatory requirements include more stringent requirements, applicable reference standards have the same force and effect as if bound or copied directly into the Contract Documents to the extent referenced. Such standards are made a part of the Contract Documents by reference.
- B. Conform to reference standard of date of issue current on date of Contract Documents, except where a specific date is established by applicable code.
- C. Obtain copies of standards where required by product specification sections.
 - 1. Although copies of standards needed for enforcement of requirements may be part of required submittals, the Architect reserves the right to require the Contractor to submit additional copies as necessary for use by others in the enforcement of requirements.
- D. Maintain copy at project site during submittals, planning, and progress of the specific work, until Substantial Completion.
- E. Should specified reference standards conflict with Contract Documents, request clarification from Architect before proceeding.

- Minimum Quantity or Quality Levels: The quantity or quality level shown or specified shall be the minimum provided or performed. The actual installation may comply exactly with the minimum quantity or quality specified, or it may exceed the minimum within reasonable limits. To comply with these requirements, indicated numeric values are minimum or maximum, as appropriate, for the context of the requirements. Refer uncertainties to Architect for a decision before proceeding.
- F. Referenced standards take precedence over standards that are not referenced but recognized in the construction industry as applicable.
- G. Non-referenced standards are not directly applicable to the Work, except as a general requirement of whether the Work complies with recognized construction industry standards.
- H. Neither the contractual relationships, duties, or responsibilities of the parties in Contract nor those of Architect shall be altered from the Contract Documents by mention or inference otherwise in any reference document.
- I. Abbreviations and Acronyms for Industry Organizations: Where abbreviations and acronyms are used in Contract Documents, they shall mean the recognized name of the entities indicated in Gale Research's "Encyclopedia of Associations" or in Columbia Books' "National Trade & Professional Associations of the United States." Contact Architect regarding any questions regarding such abbreviations and acronyms.

1.7 PROJECT MANUAL AND SPECIFICATIONS

- A. Format and structure
 - 1. Specifications are organized into Divisions and Sections based on the CSI/CSC MF numbering system.
 - 2. The sections are placed in the Project Manual in numeric sequence; however, this sequence is not complete and the Table of Contents of the specifications must be consulted to determine the total listing of sections.
 - 3. The section title is not intended to limit the meaning or content of the section, nor to be fully descriptive of the requirements specified within the Section.
 - 4. The organization of the specifications shall not control the division of the work among subcontractors or establish the extent of work to be performed by any trade.
- B. Definitions
 - Related Work Described Elsewhere: The caption "Related Requirements," "Related Sections," or "Related Work Described Elsewhere" identifies some Sections of the Specifications which may involve work involving coordination or general relationships to the work of the Section at hand. The omission of a Section from "Related Requirements," "Related Sections," or ""Related Work Described Elsewhere" does not limit the Contractor's obligation to perform all portions of the Work with all appropriate and reasonable coordination.
 - 2. Section Includes: The caption "Section Includes" or "Description" or "Summary" paragraph is intended to be a broad, general statement of the work covered by an individual section. The listing of principal items of work shall not be construed as an exhaustive or complete list.
- C. Language
 - Specification Language and Intent: The words "the," "shall," "will," and "all" may be omitted in specification Sections. Where such words as "perform," "install," "erect," "test," or words of similar import are used, it shall be understood such words include the meaning of the phrase "the Contractor shall." The requirements indicated and specified apply to all work of the same kind, class, and type, even though the word "all" is not stated.
 - Specifications use certain conventions regarding style of language and the intended meaning of certain terms, words, and phrases when used in particular situations or circumstances. These conventions are:
 - a. Language used in Specifications and other Contract. Documents is abbreviated. Words and meanings shall be interpreted as appropriate. Words that are implied, but not stated, shall be interpolated as the sense requires. Singular words shall be interpreted as plural and plural words interpreted as singular where applicable to maintain the context of the Contract Document indicated.

- b. Imperative and streamlined language is generally used in the Specifications. Requirements expressed in the imperative mode are to be performed by the Contractor. Subjective language is used for clarity to describe responsibilities that must be fulfilled indirectly by the Contractor, or by others when so noted.
- c. The words "shall be" are implied wherever a colon (:) is used within a sentence or phrase.

1.8 TESTING AND INSPECTION AGENCIES AND SERVICES

- A. Owner will employ and pay for services of an independent testing agency, approved by OSHPD, to perform inspection and testing as specified in Section 01 45 33 Code-Required Special Inspections, unless indicated otherwise.
- B. Contractor shall employ and pay for services of an independent testing agency to perform other specified testing and inspection.
 - 1. Unless specified as the Owner's responsibility, all other testing, mix design preparation, and related quality control and certification requirements shall be paid by Contractor at no additional cost to Owner.
 - 2. All concrete mix design shall be prepared at Contractor's cost and in compliance with Section 03 30 00 Cast-in-Place Concrete.
 - 3. All asphalt concrete mix designs shall be prepared at Contractor's cost and in compliance with Section 32 12 16 Asphalt Paving.
- C. Employment of agency in no way relieves Contractor of obligation to perform Work in accordance with requirements of Contract Documents.
- D. Contractor Employed Agency:
 - 1. Testing agency: Comply with requirements of ASTM E329, ASTM E543, ASTM C1021, ASTM C1077, ASTM C1093, and ASTM D3740 as applicable.
 - 2. Inspection agency: Comply with requirements of authorities having jurisdiction.
 - 3. Laboratory: Authorized to operate in the State in which the Project is located and approved by Authorities Having Jurisdiction.
 - 4. Laboratory Staff: Maintain a full time registered Engineer or specialist, as applicable, on staff to review services.
 - 5. Testing Equipment: Calibrated at reasonable intervals either by NIST or using an NIST established Measurement Assurance Program, under a laboratory measurement quality assurance program.
 - 6. Welding Inspectors: Certified in accordance with AWS QC1 Standard for AWS Certification of Welding Inspectors.

PART 2 PRODUCTS - NOT USED

PART 3 EXECUTION

- 3.1 CONTROL OF INSTALLATION
 - A. Monitor quality control over suppliers, manufacturers, products, services, site conditions, and workmanship, to produce Work of specified quality.
 - B. Comply with manufacturers' instructions, including each step in sequence.
 - C. Should manufacturers' instructions conflict with Contract Documents, request clarification from Architect before proceeding.
 - D. Comply with specified standards as minimum quality for the Work except where more stringent tolerances, codes, or specified requirements indicate higher standards or more precise workmanship.
 - E. Have Work performed by persons qualified to produce required and specified quality.
 - F. Verify that field measurements are as indicated on shop drawings or as instructed by the manufacturer.

G. Secure products in place with positive anchorage devices designed and sized to withstand stresses, vibration, physical distortion, and disfigurement.

3.2 TOLERANCES

- A. Monitor fabrication and installation tolerance control of products to produce acceptable Work. Do not permit tolerances to accumulate.
- B. Comply with manufacturers' tolerances. Should manufacturers' tolerances conflict with Contract Documents, request clarification from Architect before proceeding.
- C. Adjust products to appropriate dimensions; position before securing products in place.
- 3.3 TESTING AND INSPECTION
 - A. See individual specification sections for testing and inspection required.
 - B. Testing Agency Duties:
 - 1. Test samples of mixes submitted by Contractor.
 - 2. Provide qualified personnel at site. Cooperate with Architect and Contractor in performance of services.
 - 3. Perform specified sampling and testing of products in accordance with specified standards.
 - 4. Perform special inspections for areas of Work as shown on Drawings and specified in respective sections of the Specifications in compliance with Chapter 7, Safety Standards for Health Facilities, Part 1, Title 24, California Code of Regulations.
 - 5. Ascertain compliance of materials and mixes with requirements of Contract Documents.
 - 6. Promptly notify Architect and Contractor of observed irregularities or non-conformance of Work or products.
 - 7. Perform additional tests and inspections required by Architect.
 - 8. Submit reports of all tests/inspections specified.
 - C. Limits on Testing/Inspection Agency Authority:
 - 1. Agency may not release, revoke, alter, or enlarge on requirements of Contract Documents.
 - 2. Agency may not approve or accept any portion of the Work.
 - 3. Agency may not assume any duties of Contractor.
 - 4. Agency has no authority to stop the Work.
 - D. Contractor Responsibilities:
 - 1. Deliver to agency at designated location, adequate samples of materials proposed to be used that require testing, along with proposed mix designs.
 - 2. Cooperate with laboratory personnel, and provide access to the Work and to manufacturers' facilities.
 - 3. Provide incidental labor and facilities:
 - a. To provide access to Work to be tested/inspected.
 - b. To obtain and handle samples at the site or at source of Products to be tested/inspected.
 - c. To facilitate tests/inspections.
 - d. To provide storage and curing of test samples.
 - 4. Notify Architect and laboratory 24 hours prior to expected time for operations requiring testing/inspection services.
 - 5. Employ services of an independent qualified testing laboratory and pay for additional samples, tests, and inspections required by Contractor beyond specified requirements.
 - 6. Arrange with Owner's agency and pay for additional samples, tests, and inspections required by Contractor beyond specified requirements.
 - 7. Each signed and certified testing report shall be copied to the Owner, Architect, Structural Engineer, Contractor, and Inspector of Record.
 - E. Re-testing required because of non-conformance to specified requirements shall be performed by the same agency on instructions by Architect.
 - F. Re-testing required because of non-conformance to specified requirements shall be paid for by Contractor.

3.4 MANUFACTURERS' FIELD SERVICES

- A. When specified in individual specification sections, require material or product suppliers or manufacturers to provide qualified staff personnel to observe site conditions, conditions of surfaces and installation, quality of workmanship, start-up of equipment, test, adjust and balance of equipment and installation conditions as applicable, and to initiate instructions when necessary.
- B. Submit qualifications of observer to Architect 30 days in advance of required observations.
 1. Observer subject to approval of Architect.
- C. Report observations and site decisions or instructions given to applicators or installers that are supplemental or contrary to manufacturers' written instructions.

3.5 DEFECT ASSESSMENT

- A. Replace Work or portions of the Work not conforming to specified requirements.
- B. The Owner reserves the right to reject materials and workmanship which are deemed defective or require correction.
- C. If, in the opinion of Architect, it is not practical to remove and replace the Work, Architect will direct an appropriate remedy or adjust payment.

SECTION 01 41 00 - REGULATORY REQUIREMENTS

PART 1 GENERAL

- 1.1 SUMMARY OF REFERENCE STANDARDS
 - A. Perform all Work in accordance to the latest enforced Statutes, Ordinances, Laws, Rules, Codes, Regulations, Standards, and Lawful Orders of all Public Authorities Having Jurisdiction.
 - B. Amended Construction Documents:
 - Comply with Chapter 7 Safety Standards for Health Facilities, Part 1, Title 24, California Code of Regulations, Section 7-153 regarding changes to the work and amended construction documents. All changes other than those that do not materially alter the Work require submission of amended construction documents and OSHPD approval.
 - 2. In accordance with Title 24 of the California Code of Regulations, obtain approval by the Office of Statewide Health Planning and Development (OSHPD) prior to proceeding with fabrication and construction of changes to the Work.
 - C. Regulatory requirements applicable to this project are the following:
 - D. 36 CFR 1191 Americans with Disabilities Act (ADA) Accessibility Guidelines for Buildings and Facilities; Architectural Barriers Act (ABA) Accessibility Guidelines; current edition.
 - E. ADA Standards Americans with Disabilities Act (ADA) Standards for Accessible Design; 2010.
 - F. California Occupational Safety and Health Regulations (Cal/OSHA), Title 8, Chapter 3.2, California Code of Regulations; current edition; as a work place.
 - G. CBSC (CAC) California Administrative Code (Part 1 of Title 24, California Code of Regulations), Chapter 7; 2016.
 - H. ICC A117.1 Accessible and Usable Buildings and Facilities; 2009.
 - I. CBSC/ICC (CFC) California Fire Code (Part 9 of Title 24, California Code of Regulations); 2016.
 - J. CBSC/ICC (CBC) California Building Code (Part 2 of Title 24, California Code of Regulations); 2016.
 - K. CBSC/IAPMO (CPC) California Plumbing Code (Part 5 of Title 24, California Code of Regulations); 2016.
 - L. CBSC/IAPMO (CMC) California Mechanical Code (Part 4 of Title 24, California Code of Regulations); 2016.
 - M. NFPA 70 National Electrical Code; Most Recent Edition Adopted by Authority Having Jurisdiction, Including All Applicable Amendments and Supplements.
 - N. CBSC/NFPA (CEC) California Electrical Code (Part 3 of Title 24, California Code of Regulations); 2016.
 - O. CBSC California Referenced Standards Code (Part 12 of Title 24, California Code of Regulations); 2016.
 - P. County of San Diego Air Pollution Control District (SDAPCD) Rules and Regulations.
- 1.2 RELATED REQUIREMENTS
 - A. Section 01 40 00 Quality Requirements.
- 1.3 QUALITY ASSURANCE
 - A. Designer Qualifications: Where delegated engineering design is to be performed under the construction contract provide the direct supervision of a Professional Engineer experienced in design of this type of work and licensed in the State in which the Project is located.

PART 2 PRODUCTS - NOT USED

PART 3 EXECUTION - NOT USED

SECTION 01 42 16 - DEFINITIONS

PART 1 GENERAL

1.1 SUMMARY

- A. This section supplements the definitions contained in the General Conditions.
- B. Other definitions are included in individual specification sections.

1.2 DEFINITIONS

- A. Approved: The term "approved," when used in conjunction with Architect's action on Contractor's submittals, applications, and requests, is limited to Architect's duties and responsibilities as stated in the Conditions of the Contract.
- B. Directed: Terms such as "directed," "requested," "authorized," "selected," "approved," "required," and "permitted" mean directed by Architect, requested by Architect, and similar phrases.
- C. Experienced: The term "experienced," when used with the term "installer," means having successfully completed a minimum of five previous projects similar in size and scope to this Project; being familiar with the special requirements indicated; and having complied with requirements of authorities having jurisdiction.
 - Using a term such as "carpentry" does not imply that certain construction activities must be performed by accredited or unionized individuals of a corresponding generic name, such as "carpenter." It also does not imply that requirements specified apply exclusively to tradespeople of the corresponding generic name.
- D. Furnish: To supply, deliver, unload, and inspect for damage.
- E. Indicated: The term "indicated" refers to graphic representations, notes, or schedules on Drawings; or to other paragraphs or schedules in Specifications and similar requirements in the Contract Documents. Terms such as "shown," "noted," "scheduled," and "specified" are used to help the user locate the reference.
- F. Install: To unpack, assemble, erect, apply, place, finish, cure, protect, clean, start up, and make ready for use.
- G. Installer: An installer is Contractor or another entity engaged by Contractor, as an employee, subcontractor, or contractor of lower tier, to perform a particular construction operation, including installation, erection, application, and similar operations.
- H. Product: Material, machinery, components, equipment, fixtures, and systems forming the work result. Not materials or equipment used for preparation, fabrication, conveying, or erection and not incorporated into the work result. Products may be new, never before used, or re-used materials or equipment.
- I. Project Manual: The book-sized volume that includes the procurement requirements (if any), the contracting requirements, and the specifications.
- J. Provide: To furnish and install.
- K. Regulations: The term "regulations" includes laws, ordinances, statutes, and lawful orders issued by authorities having jurisdiction, as well as rules, conventions, and agreements within the construction industry that control performance of the Work.
- L. Supply: Same as Furnish.

PART 2 PRODUCTS - NOT USED

PART 3 EXECUTION - NOT USED

SECTION 01 45 33 - CODE-REQUIRED SPECIAL INSPECTIONS

PART 1 GENERAL

- 1.1 SECTION INCLUDES
 - A. Code-required special inspections.
 - B. Testing services incidental to special inspections.
 - C. Submittals.
 - D. Manufacturers' field services.
 - E. Fabricators' field services.

1.2 RELATED REQUIREMENTS

- A. Section 01 30 00 Administrative Requirements: Submittal procedures.
- B. Section 01 40 00 Quality Requirements.
- C. Section 01 60 00 Product Requirements: Requirements for material and product quality.

1.3 DEFINITIONS

- A. Code or Building Code: City of Oceanside Amendments to the 2016 Edition of the California Building Code and, more specifically, Chapter 17A - Structural Test and Special Inspections, of same.
- B. Authority Having Jurisdiction (AHJ): Agency or individual officially empowered to enforce the building, fire and life safety code requirements of the permitting jurisdiction in which the Project is located.
 - 1. The Office of Statewide Health Planning and Development (OSHPD) is the Authority Having Jurisdiction for this project.
- C. Special Inspection:
 - 1. Special inspections are inspections and testing of materials, installation, fabrication, erection or placement of components and connections mandated by the AHJ that also require special expertise to ensure compliance with the approved contract documents and the referenced standards.
 - 2. Special inspections are separate from and independent of tests and inspections conducted by Owner or Contractor for the purposes of quality assurance and contract administration.

1.4 REFERENCE STANDARDS

A. CBSC/ICC (CBC) - California Building Code; 2016.

1.5 SUBMITTALS

- A. See Section 01 30 00 Administrative Requirements, for submittal procedures.
- B. Special Inspection Agency Qualifications: Prior to the start of work, the Special Inspection Agency shall:
 - 1. Submit agency name, address, and telephone number, names of full time registered Engineer and responsible officer.
 - 2. Submit copy of report of testing agency facilities inspection made by NIST Construction Materials Reference testing agency during most recent inspection, with memorandum of remedies of any deficiencies reported by the inspection.
 - 3. Submit certification that Special Inspection Agency is acceptable to AHJ.
- C. Testing Agency Qualifications: Prior to the start of work, the Testing Agency shall:
 - 1. Submit agency name, address, and telephone number, and names of full time registered Engineer and responsible officer.
 - 2. Submit copy of report of testing agency facilities inspection made by NIST Construction Materials Reference testing agency during most recent inspection, with memorandum of remedies of any deficiencies reported by the inspection.

- 3. Submit certification that Testing Agency is acceptable to AHJ.
- D. Manufacturer's Qualification Statement: Manufacturer shall submit documentation of manufacturing capability and quality control procedures.
- E. Fabricator's Qualification Statement: Fabricator shall submit documentation of fabrication facilities and methods as well as quality control procedures.
- F. Special Inspection Reports: After each special inspection, Special Inspector shall promptly submit two copies of report; one to Architect and one to the AHJ.
 - 1. Include:
 - a. Date issued.
 - b. Project title and Cuningham Group Architecture, Inc. project number.
 - c. AHJ Application number.
 - d. Name of Special Inspector.
 - e. Date and time of special inspection.
 - f. Identification of product and Specifications section.
 - g. Location in the Project.
 - h. Type of special inspection.
 - i. Date of special inspection.
 - j. Results of special inspection.
 - k. Conformance with Contract Documents.
 - 2. Final Special Inspection Report: Document special inspections and correction of discrepancies prior to the start of the work.
- G. Fabricator Special Inspection Reports: After each special inspection of fabricated items at the Fabricator's facility, Special Inspector shall promptly submit two copies of report; one to Architect and one to AHJ.
 - 1. Include:
 - a. Date issued.
 - b. Project title and Cuningham Group Architecture, Inc. project number.
 - c. AHJ Application number.
 - d. Name of Special Inspector.
 - e. Date and time of special inspection.
 - f. Identification of fabricated item and Specifications section.
 - g. Location in the Project.
 - h. Results of special inspection.
 - i. Verification of fabrication and quality control procedures.
 - j. Conformance with Contract Documents.
 - k. Conformance to referenced standard(s).
- H. Test Reports: After each test or inspection, promptly submit two copies of report; one to Architect and one to AHJ.
 - 1. Include:
 - a. Date issued.
 - b. Project title and Cuningham Group Architecture, Inc.'s project number.
 - c. AHJ Application number.
 - d. Name of inspector.
 - e. Date and time of sampling or inspection.
 - f. Method of obtaining sample.
 - g. Identification of product and Specifications section.
 - h. Location in the Project.
 - i. Type of test or inspection.
 - j. Date of test or inspection.
 - k. Results of test or inspection.
 - I. Conformance with Contract Documents.
 - m. Indicate samples taken but not tested.
 - 2. When requested by Architect, provide interpretation of results.

- I. Verified Compliance Reports: Testing agency shall provide verified compliance reports as required by the California Administrative Code (CCR, Title 24, Part 1), Section 7-151.
 - 1. Provide such reports in duplicate, on approved form.
 - 2. Provide reports each time work on the project is suspended; on intervals or stages of the work as stated in the approved Test, Inspection and Observation (TIO) program.
 - 3. Reports shall document actions taken, tests made, and other aspects of the construction operations for the period prescribed.
- J. Certificates: When specified in individual special inspection requirements, Special Inspector shall submit certification by the manufacturer, fabricator, and installation subcontractor to Architect and AHJ, in quantities specified for Product Data.
 - 1. Indicate material or product conforms to or exceeds specified requirements. Submit supporting reference data, affidavits, and certifications as appropriate.
 - 2. Certificates may be recent or previous test results on material or product, but must be acceptable to Architect and AHJ.
- K. Manufacturer's Field Reports: Submit reports to Architect and AHJ.
 - 1. Submit report in duplicate within 30 days of observation to Architect for information.
 - 2. Submit for information for the limited purpose of assessing conformance with information given and the design concept expressed in the contract documents.
- L. Fabricator's Field Reports: Submit reports to Architect and AHJ.
 - 1. Submit report in duplicate within 30 days of observation to Architect for information.
 - 2. Submit for information for the limited purpose of assessing conformance with information given and the design concept expressed in the contract documents.

1.6 SPECIAL INSPECTION AGENCY

- A. Owner or Architect will employ services of a Special Inspection Agency to perform inspections and associated testing and sampling in accordance with ASTM E329 and required by the building code.
 - 1. In addition to the Inspector(s) of Record required by the California Administrative Code (CCR, Title 24, Part 1), Section 7-144, the Owner shall employ one or more special inspectors who shall provide inspections during construction per CBC 1701A.4.
 - Unless specified as the Owner's responsibility, all other testing, mix design preparation, and related quality control and certification requirements shall be paid for by the Contractor at no additional cost to the Owner.
 - 3. The Contractor shall reimburse the Owner, through Contract adjustment, for inspection and testing costs caused by the following Contractor actions:
 - a. All testing costs incurred after initial test established non-conformance with contract requirements.
 - b. Inspection costs caused by Contractor's scheduling of work requiring inspections of less than 4 hours duration.
 - c. Inspection costs caused by Contractor's failure to complete work requiring inspection within the scheduled duration period shown on Contractor's initial construction schedule.
 - d. Inspection costs caused by Contractor's failure to order sufficient or required quantity of material.
 - e. Inspection costs of items repaired following damage caused by Contractor.
 - f. Inspection costs caused by Contractor's substitution of material, system or process, where such inspection and testing is required by the Architect, Owner or jurisdictional authority to demonstrate compliance with specified criteria.
 - g. Inspection costs caused by Contractor's use of batch plant that does not comply with criteria waiving batch plant inspection.
 - h. Inspection costs caused by Contractor's use of a supplier or subcontractor requiring inspection services to be performed at a location exceeding a 100 mile radius of project site.
 - i. Inspection costs caused by Contractor's failure to complete work within normal hours and days, requiring overtime costs.

- B. Employment of agency in no way relieves Contractor of obligation to perform work in accordance with requirements of Contract Documents.
- C. Only OSHPD, local legally constituted public AHJ, and the Owner or Owner's Representative shall be authorized to direct testing and inspection to determine compliance or noncompliance with the requirements of the Work.
- 1.7 TESTING AND INSPECTION AGENCIES
 - A. Owner may employ services of an independent testing agency to perform additional testing and sampling associated with special inspections but not required by the building code.
 - B. Employment of agency in no way relieves Contractor of obligation to perform work in accordance with requirements of Contract Documents.

1.8 QUALITY ASSURANCE

- A. Special Inspection Agency Qualifications:
 - 1. Independent firm specializing in performing testing and inspections of the type specified in this section.
 - 2. Conforming to CBC Section 1704A.2.1 and currently approved by OSHPD.
- B. Testing Agency Qualifications:
 - 1. Independent firm specializing in performing testing and inspections of the type specified in this section.
 - 2. Conforming to CBC Section 1703A.1 and currently approved by OSHPD.
- C. Copies of Documents at Project Site: Maintain at the project site a copy of each referenced document.

PART 2 PRODUCTS - NOT USED

PART 3 EXECUTION

- 3.1 SPECIAL INSPECTIONS, GENERAL
 - A. Frequency of Special Inspections: Special Inspections are indicated as continuous or periodic.
 - 1. Continuous Special Inspection: Special Inspection Agency shall be present in the area where the work is being performed and observe the work at all times the work is in progress.
 - 2. Periodic Special Inspection: Special Inspection Agency shall be present in the area where work is being performed and observe the work part-time or intermittently and at the completion of the work.
 - B. Refer to OSHPD Testing, Inspection and Observation Program form for required tests and inspections.

3.2 SPECIAL INSPECTION AGENCY DUTIES AND RESPONSIBILITIES

- A. Special Inspection Agency shall:
 - 1. Verify samples submitted by Contractor comply with the referenced standards and the approved contract documents.
 - 2. Provide qualified personnel at site. Cooperate with Architect and Contractor in performance of services.
 - 3. Perform specified sampling and testing of products in accordance with specified reference standards.
 - 4. Ascertain compliance of materials and products with requirements of Contract Documents.
 - 5. Promptly notify Architect and Contractor of observed irregularities or non-conformance of work or products.
 - 6. Perform additional tests and inspections required by Architect.
 - 7. Submit reports of all tests or inspections specified.
- B. Limits on Special Inspection Agency Authority:

- 1. Agency may not release, revoke, alter, or enlarge on requirements of Contract Documents.
- 2. Agency may not approve or accept any portion of the work.
- 3. Agency may not assume any duties of Contractor.
- 4. Agency has no authority to stop the work.
- C. Re-testing required because of non-conformance to specified requirements shall be performed by the same agency on instructions by Architect.
- D. Re-testing required because of non-conformance to specified requirements shall be paid for by Contractor.

3.3 TESTING AGENCY DUTIES AND RESPONSIBILITIES

- A. Testing Agency Duties:
 - 1. Test samples submitted by Contractor.
 - 2. Provide qualified personnel at site. Cooperate with Architect and Contractor in performance of services.
 - 3. Perform specified sampling and testing of products in accordance with specified standards.
 - 4. Ascertain compliance of materials and mixes with requirements of Contract Documents.
 - 5. Promptly notify Architect and Contractor of observed irregularities or non-conformance of work or products.
 - 6. Perform additional tests and inspections required by Architect.
 - 7. Submit reports of all tests or inspections specified.
- B. Limits on Testing or Inspection Agency Authority:
 - 1. Agency may not release, revoke, alter, or enlarge on requirements of Contract Documents.
 - 2. Agency may not approve or accept any portion of the work.
 - 3. Agency may not assume any duties of Contractor.
 - 4. Agency has no authority to stop the work.
- C. Re-testing required because of non-conformance to specified requirements shall be performed by the same agency on instructions by Architect.
- D. Re-testing required because of non-conformance to specified requirements shall be paid for by Contractor.

3.4 CONTRACTOR DUTIES AND RESPONSIBILITIES

- A. Contractor Responsibilities, General:
 - 1. Deliver to agency at designated location, adequate samples of materials for special inspections that require material verification.
 - 2. Cooperate with agency and testing agency personnel; provide access to the work, to manufacturers' facilities, and to fabricators' facilities.
 - 3. Provide incidental labor and facilities:
 - a. To provide access to work to be tested or inspected.
 - b. To obtain and handle samples at the site or at source of Products to be tested or inspected.
 - c. To facilitate tests or inspections.
 - d. To provide storage and curing of test samples.
 - 4. Notify Architect and testing agency 24 hours prior to expected time for operations requiring testing or inspection services.
 - 5. Arrange with Owner's agency and pay for additional samples, tests, and inspections required by Contractor beyond specified requirements.
- B. Contractor Responsibilities, Seismic Force-Resisting Systems: Submit written statement of responsibility for each item listed to AHJ and Owner prior to starting work. Statement of responsibility shall acknowledge awareness of special construction requirements and other requirements listed.
- C. Contractor Responsibilities, Wind Force-Resisting Systems: Submit written statement of responsibility for each item listed to AHJ and Owner prior to starting work. Statement of

responsibility shall acknowledge awareness of special construction requirements and other requirements listed.

3.5 MANUFACTURERS' AND FABRICATORS' FIELD SERVICES

- A. When specified in individual specification sections, require material suppliers, assembly fabricators, or product manufacturers to provide qualified staff personnel to observe site conditions, conditions of surfaces and installation, quality of workmanship, start-up of equipment, to test, adjust, and balance equipment as applicable, and to initiate instructions when necessary.
- B. Submit qualifications of observer to Architect 30 days in advance of required observations.
 1. Observer subject to approval of Architect.
- C. Report observations and site decisions or instructions given to applicators or installers that are supplemental or contrary to manufacturers' written instructions.

SECTION 01 50 00 - TEMPORARY FACILITIES AND CONTROLS

PART 1 GENERAL

- 1.1 SECTION INCLUDES
 - A. Temporary utilities.
 - B. Temporary fire protection.
 - C. Temporary telecommunications services.
 - D. Temporary sanitary facilities.
 - E. Temporary Controls: Barriers, enclosures, and fencing.
 - F. Security requirements.
 - G. Vehicular access and parking.
 - H. Waste removal facilities and services.
 - I. Field offices.
- 1.2 RELATED REQUIREMENTS
 - A. Section 01 35 53 Security Procedures
- 1.3 REFERENCE STANDARDS
 - A. NFPA 241 Standard for Safeguarding Construction, Alteration, and Demolition Operations; 2013.
 - B. CBSC (CAC) California Administrative Code (Part 1 of Title 24, California Code of Regulations), Chapter 7; 2016.

1.4 TEMPORARY UTILITIES

- A. Owner will provide the following:
 - 1. Electrical power, consisting of connection to existing facilities.
 - a. Exercise measures to conserve energy.
 - b. Provide all required disconnects, overcurrent protection devices, branch circuits, power cords, and outlets as required for the Work.
 - c. Where approved by Architect, permanent convenience outlets may be used during construction.
 - 2. Water supply, consisting of connection to existing facilities.
 - a. Exercise measures to conserve water, including use of trigger-operated hoses.
 - b. Use of on-site existing water service for potable drinking water is acceptable. Coordinate point of connection with Owner.
- B. Provide and pay for all lighting, heating and cooling, and ventilation required for construction purposes.
 - 1. Provide all lighting required for safety and security of paths and areas affected by construction.
 - 2. Provide and maintain, at all times, temporary lighting and exit light/path devices in corridor areas as required by applicable codes.
 - 3. Ventilate enclosed areas to prevent accumulation of dust, fumes, vapors, or gases. Where necessary to comply with requirements of this Section, provide ducted ventilation system.
 - a. Utilize equipment as required to exhaust noxious fumes directly to the outside of the building at an approved location.
 - b. Locate ventilation discharge point at an approved location, away from walkways, HVAC intakes, windows of occupied areas, and other similar locations.
 - c. No internal combustion engines will be allowed within the building or within 50 feet of the building without prior written authorization from the Owner.
 - 4. Use of permanent equipment for temporary HVAC is prohibited without prior approval by Architect and Owner. Where prior approval is given, Contractor shall be responsible for cost of all energy used, filter replacement, and other operational criteria.

- 5. Maintain temperatures as required by occupational safety regulations.
- 6. Owner will pay cost of energy used. Exercise measures to conserve energy.
- C. Existing facilities may not be used.
- D. Use trigger-operated nozzles for water hoses, to avoid waste of water.

1.5 TEMPORARY FIRE PROTECTION

- A. Temporary Fire Protection: Install and maintain temporary fire-protection facilities of types needed to protect against reasonably predictable and controllable fire losses. Comply with NFPA 241, CFC Section 3311, and the Office of Statewide Health Planning and Development (OSHPD) CAN 9-3311; manage fire-prevention program.
 - 1. Prohibit smoking in construction areas.
 - 2. Supervise welding operations, combustion-type temporary heating units, and similar sources of fire ignition according to requirements of authorities having jurisdiction.
 - 3. Develop and supervise an overall fire-prevention and -protection program for personnel at Project site. Review needs with local fire department and establish procedures to be followed. Instruct personnel in methods and procedures. Post warnings and information.
 - 4. Provide temporary standpipes and hoses for fire protection. Hang hoses with a warning sign stating that hoses are for fire-protection purposes only and are not to be removed. Match hose size with outlet size and equip with suitable nozzles.

1.6 TEMPORARY INSTALLATIONS

A. At the discretion of OSHPD, the facility must submit a letter that describes the type of temporary installation, the reason, and the period of temporary installation, and any additional document required by OSHPD. Refer to OSHPD CAN 2-108 and CAN 2-102-6.

1.7 TELECOMMUNICATIONS SERVICES

- A. Provide, maintain, and pay for telecommunications services to field office at time of project mobilization.
- B. Provide equivalent equipment and connections for Inspector's field office.
- C. Telecommunications services shall include:
 - 1. Windows-based personal computer dedicated to project telecommunications, with necessary software and laser printer capable of scanning and printing up to 11 by 17 inch sheets.
 - 2. Internet Connections: Minimum of one; DSL modem or faster.

1.8 TEMPORARY SANITARY FACILITIES

- A. Provide and maintain required facilities and enclosures. Provide at time of project mobilization.
- B. Provide two toilet facilities at site, one each for male and female employees, or as required for all Contractor and subcontractor forces on site, whichever is greater.
- C. Locate toilet facilities as directed by Owner. Relocate when required.
- D. Use of existing facilities is not permitted.
- E. Maintain daily in clean and sanitary condition.

1.9 BARRIERS

- A. Provide barriers to prevent unauthorized entry to construction areas, to prevent access to areas that could be hazardous to workers or the public, to allow for owner's use of site and to protect existing facilities and adjacent properties from damage from construction operations and demolition.
 - 1. When regulated by codes, such legal requirements for protection shall be considered as minimum requirements. Provide protective measures in excess of such minimum requirements as specified or required.
- B. Provide barricades and covered walkways required by governing authorities for public rights-of-way .
- C. Provide protection for plants designated to remain. Replace damaged plants.

D. Protect non-owned vehicular traffic, stored materials, site, and structures from damage.

1.10 FENCING

- A. Construction: Commercial grade chain link fence.
- B. Provide 6 foot high fence around construction site; equip with vehicular and pedestrian gates with locks.

1.11 EXTERIOR ENCLOSURES

A. Provide temporary weather tight closure of exterior openings to accommodate acceptable working conditions and protection for Products, to allow for temporary heating and maintenance of required ambient temperatures identified in individual specification sections, and to prevent entry of unauthorized persons. Provide access doors with self-closing hardware and locks.

1.12 INTERIOR ENCLOSURES

- A. Provide temporary partitions as indicated to separate work areas from Owner-occupied areas, to prevent penetration of dust and moisture into Owner-occupied areas, and to prevent damage to existing materials and equipment.
- B. Construction: Framing and gypsum board sheet materials with closed joints and sealed edges at intersections with existing surfaces:
 - 1. Construct barriers as metal framed/fire-resistive gypsum board fire resistive corridor construction, with self-closing, latching door assembly. Provide temporary partition and door assembly fire resistivity rating equal to the assembly being replaced.
 - 2. Use of sheet plastic dust barriers in place of rated assemblies is prohibited.
- C. Paint surfaces exposed to view from Owner-occupied areas, color as selected by Architect.
- D. Protect existing surfaces, equipment and furnishings from damage from construction operations and demolition. Where necessary, remove and store in separate area.
- E. Where demolition or construction operations generate fine dust or air-borne particulates, provide fire-retardant drop cloths, screening, or other approved barriers to prevent dust intrusion into existing cabinet interiors, equipment, drawers, and similar conditions.
- F. Provide contamination control mats at construction area access locations to prevent tracking of construction dust and dirt into Owner-occupied portion of building and elevator cars.
- 1.13 SECURITY SEE SECTION 01 35 53
- 1.14 VEHICULAR ACCESS AND PARKING
 - A. Comply with regulations relating to use of streets and sidewalks, access to emergency facilities, and access for emergency vehicles.
 - B. Coordinate access and haul routes with governing authorities and Owner.
 - C. Provide and maintain access to fire hydrants, free of obstructions.
 - D. Provide means of removing mud from vehicle wheels before entering streets.
 - E. Maintain parking lots, drives and walkways free of dust, mud and debris when Owner takes beneficial occupancy of a portion of project prior to final completion.
 - F. Designated existing on-site roads may be used for construction traffic.
 - G. Provide temporary parking areas to accommodate construction personnel. When site space is not adequate, provide additional off-site parking.
 - H. Existing parking areas designated by Owner may be used for construction parking.
 - I. Do not permit parking on adjacent public streets.
- 1.15 WASTE REMOVAL
 - A. See Section 01 74 19 Construction Waste Management and Disposal, for additional requirements.

- B. Provide waste removal facilities and services as required to maintain the site in clean and orderly condition.
 - 1. Use cleaning materials which do not create hazards to health or property and which will not damage surfaces. Use only those cleaning materials and methods recommended by manufacturer of the surface material to be cleaned. Use cleaning materials only on surfaces recommended by cleaning material manufacturer.
 - 2. Broom and vacuum clean interior areas prior to start of surface finishing, and continue cleaning to eliminate dust.
 - 3. Schedule operations so that dust and other contaminants resulting from cleaning procedures or construction operations will not fall on wet or newly-coated surfaces.
 - 4. Provide watering, dust palliative admixture or other methods as required to minimize dust generation during work. Where required by Owner, provide dust screen netting at property line temporary fencing.
- C. Provide containers with lids. Remove trash from site weekly.
- D. If materials to be recycled or re-used on the project must be stored on-site, provide suitable non-combustible containers; locate containers holding flammable material outside the structure unless otherwise approved by the authorities having jurisdiction.
- E. Open free-fall chutes are not permitted. Terminate closed chutes into appropriate containers with lids.
- F. Remove debris and rubbish from pipe chases, plenums, attics, crawl spaces, and other closed or remote spaces, prior to enclosing the space.
- 1.16 FIELD OFFICES
 - A. Office: Weathertight, with lighting, electrical outlets, heating, cooling equipment, and equipped with sturdy furniture, drawing rack, and drawing display table.
 - B. Provide space for Project meetings, with table and chairs to accommodate 6 persons.
 - C. Furnish, install and maintain tool cribs, sheds and storage units for the Contractor's use as necessary for the proper execution of the work.
 - 1. Provide all necessary barricades, warning devices, and enclosures required to protect and direct visitors and staff around tool and equipment located in passageways and corridors.
 - 2. Return all small tools and secure in locked compartments or cribs at close of work day.
 - 3. Safe-off or lock all equipment and large tools. Disable from malicious or accidental start-up and operation.
 - 4. Storage facilities shall provide protection of all products from damage due to environmental conditions, abuse, or theft.
 - D. Comply with requirements of regulatory agencies having jurisdiction. Obtain and apply for permits required by governing authorities.
 - E. Locate offices as directed by Owner and as required to avoid interference with Work. Relocate temporary structures as required by job progress.
 - F. Maintain on site one copy of Project Record Documents, also called Record Job Set, as specified in Section 01 78 00 Closeout Submittals. Stamp set "RECORD JOB SET DO NOT REMOVE." During the course or construction, use this set to record actual revisions to the Work.
- 1.17 REMOVAL OF UTILITIES, FACILITIES, AND CONTROLS
 - A. Remove temporary utilities, equipment, facilities, materials, prior to Final Application for Payment inspection.
 - B. Remove underground installations to a minimum depth of 2 feet. Grade site as indicated.
 - C. Clean and repair damage caused by installation or use of temporary work.
 - D. Restore existing facilities used during construction to original condition.

PART 2 PRODUCTS - NOT USED

PART 3 EXECUTION - NOT USED

SECTION 01 60 00 - PRODUCT REQUIREMENTS

PART 1 GENERAL

- 1.1 SECTION INCLUDES
 - A. General product requirements.
 - B. Re-use of existing products.
 - C. Transportation, handling, storage and protection.
 - D. Product option requirements.
 - E. Substitution limitations.
 - F. Procedures for Owner-supplied products.
 - G. Maintenance materials, including extra materials, spare parts, tools, and software.

1.2 RELATED REQUIREMENTS

- A. Section 01 25 00 Substitution Procedures: Substitutions made during and after the Bidding/Negotiation Phase.
- B. Section 01 40 00 Quality Requirements: Product quality monitoring.
- C. Section 01 61 16 Volatile Organic Compound (VOC) Content Restrictions: Requirements for VOC-restricted product categories.
- D. Section 01 74 19 Construction Waste Management and Disposal: Waste disposal requirements potentially affecting packaging and substitutions.

1.3 REFERENCE STANDARDS

- A. 16 CFR 260.13 Guides for the Use of Environmental Marketing Claims; Federal Trade Commission; Recycled Content; Current Edition.
- B. C2C (DIR) C2C Certified Products Registry; Cradle to Cradle Products Innovation Institute; www.c2ccertified.org/products/registry.
- C. EN 15804 Sustainability of construction works Environmental product declarations Core rules for the product category of construction products; 2012.
- D. GreenScreen (LIST) GreenScreen for Safer Chemicals List Translator; Clean Production Action; www.greenscreenchemicals.org.
- E. GreenScreen (METH) GreenScreen for Safer Chemicals Method v1.2; Clean Production Action; www.greenscreenchemicals.org.
- F. HPDC (Tool) Create an HPD On-Line Tool; Health Product Declaration Collaborative; http://www.hpd-collaborative.org/.
- G. ISO 14025 Environmental labels and declarations -- Type III environmental declarations -- Principles and procedures; 2006.
- H. ISO 14040 Environmental management -- Life cycle assessment -- Principles and framework; 2006.
- I. ISO 14044 Environmental management -- Life cycle assessment -- Requirements and guidelines; 2006.
- J. ISO 21930 Sustainability in building construction -- Environmental declaration of building products; 2007.
- K. NEMA MG 1 Motors and Generators; 2014.
- L. NFPA 70 National Electrical Code; Most Recent Edition Adopted by Authority Having Jurisdiction, Including All Applicable Amendments and Supplements.

1.4 SUBMITTALS

- A. Proposed Products List: Submit list of major products proposed for use, with name of manufacturer, trade name, and model number of each product.
 - 1. Submit within 15 days after date of Notice to Proceed.
 - 2. For products specified only by reference standards, list applicable reference standards.
- B. Product Data Submittals: Submit manufacturer's standard published data. Mark each copy to identify applicable products, models, options, and other data. Supplement manufacturers' standard data to provide information specific to this Project.
- C. Shop Drawing Submittals: Prepared specifically for this Project; indicate utility and electrical characteristics, utility connection requirements, and location of utility outlets for service for functional equipment and appliances.
- D. Sample Submittals: Illustrate functional and aesthetic characteristics of the product, with integral parts and attachment devices. Coordinate sample submittals for interfacing work.
 - 1. For selection from standard finishes, submit samples of the full range of the manufacturer's standard colors, textures, and patterns.

1.5 QUALITY ASSURANCE

- A. Cradle-to-Cradle Certified: End use product certified Cradle-to-Cradle v2 Basic or Cradle-to-Cradle v3 Bronze, minimum, as evidenced by C2C (DIR).
- B. Environmental Product Declaration (EPD): Publicly available, critically reviewed life cycle analysis having at least a cradle-to-gate scope.
 - 1. Good: Product-specific; compliant with ISO 14044.
 - 2. Better: Industry-wide, generic; compliant with ISO 21930, or with ISO 14044, ISO 14040, ISO 14025, and EN 15804; Type III third-party certification with external verification, in which the manufacturer is recognized as the program operator.
 - Best: Commercial-product-specific; compliant with ISO 21930, or with ISO 14044, ISO 14040, ISO 14025, and EN 15804; Type III third-party certification with external verification, in which the manufacturer is recognized as the program operator.
 - 4. Where demonstration of impact reduction below industry average is required, submit both industry-wide and commercial-product-specific declarations; or submit at least 5 declarations for products of the same type by other manufacturers in the same industry.
- C. GreenScreen Chemical Hazard Analysis: All ingredients of 100 parts-per-million or greater evaluated using GreenScreen (METH).
 - 1. Good: GreenScreen (LIST) evaluation to identify Benchmark 1 hazards; a Health Product Declaration includes this information.
 - 2. Better: GreenScreen Full Assessment.
 - 3. Best: GreenScreen Full Assessment by GreenScreen Licensed Profiler.
 - 4. Acceptable Evidence: GreenScreen report.
- D. Health Product Declarations (HPD): Complete, published declaration with full disclosure of known hazards, prepared using HPDC (Tool); HPD's with "unknown" listed for any hazard will not be considered acceptable.

PART 2 PRODUCTS

2.1 EXISTING PRODUCTS

- A. Do not use materials and equipment removed from existing premises unless specifically required or permitted by the Contract Documents.
- B. Unforeseen historic items encountered remain the property of the Owner; notify Owner promptly upon discovery; protect, remove, handle, and store as directed by Owner.
- C. Existing materials and equipment indicated to be removed, but not to be re-used, relocated, reinstalled, delivered to the Owner, or otherwise indicated as to remain the property of the Owner, become the property of the Contractor; remove from site.

D. Specific Products to be Reused: The reuse of certain materials and equipment already existing on the project site is prohibited unless explicitly indicated on the drawings on in the specifications.

2.2 NEW PRODUCTS

- A. Provide new products unless specifically required or permitted by the Contract Documents.
- B. DO NOT USE products having any of the following characteristics:
 - 1. Made using or containing CFC's or HCFC's.
 - 2. Made of wood from newly cut old growth timber.
 - 3. Containing lead, cadmium, asbestos.
- C. Where all other criteria are met, Contractor shall give preference to products that:
 - 1. If used on interior, have lower emissions, as defined in Section 01 61 16.
 - 2. If wet-applied, have lower VOC content, as defined in Section 01 61 16.
 - 3. Are extracted, harvested, and/or manufactured closer to the location of the project.
 - 4. Have longer documented life span under normal use.
 - 5. Result in less construction waste.
 - 6. Are made of recycled materials.
 - 7. Are Cradle-to-Cradle Certified.
 - 8. Have a published Environmental Product Declaration (EPD).
 - 9. Have a published Health Product Declaration (HPD).
 - 10. Have a published GreenScreen Chemical Hazard Analysis.

2.3 PRODUCT OPTIONS

- A. Products Specified by Reference Standards or by Description Only: Use any product meeting those standards or description.
- B. Products Specified by Naming One or More Manufacturers: Use a product of one of the manufacturers named and meeting specifications, no options or substitutions allowed.
- C. Products Specified by Naming One or More Manufacturers with a Provision for Equals: Submit a request for substitution for any manufacturer not named. It is the Contractor's responsibility to demonstrate proposed substitution is equal to that specified. Products that are not deemed equal by the Architect will be rejected.
- D. Products Specified by Naming One or More Manufacturers with a Provision for Substitutions: Submit a request for substitution for any manufacturer not named.

2.4 MAINTENANCE MATERIALS

- A. Furnish extra materials, spare parts, tools, and software of types and in quantities specified in individual specification sections.
- B. Deliver to Project site unless directed otherwise; obtain receipt prior to final payment.

PART 3 EXECUTION

- 3.1 SUBSTITUTION LIMITATIONS
 - A. See Section 01 25 00 Substitution Procedures.
- 3.2 OWNER-SUPPLIED PRODUCTS
 - A. See Section 01 10 00 Summary for identification of Owner-supplied products.
 - B. Owner's Responsibilities:
 - 1. Arrange for and deliver Owner reviewed shop drawings, product data, and samples, to Contractor.
 - 2. Arrange and pay for product delivery to site.
 - 3. On delivery, inspect products jointly with Contractor.
 - 4. Submit claims for transportation damage and replace damaged, defective, or deficient items.
 - 5. Arrange for manufacturers' warranties, inspections, and service.

- C. Contractor's Responsibilities:
 - 1. Review Owner reviewed shop drawings, product data, and samples.
 - 2. Receive and unload products at site; inspect for completeness or damage jointly with Owner.
 - 3. Handle, store, install and finish products.
 - 4. Repair or replace items damaged after receipt.
- 3.3 TRANSPORTATION AND HANDLING
 - A. Package products for shipment in manner to prevent damage; for equipment, package to avoid loss of factory calibration.
 - B. If special precautions are required, attach instructions prominently and legibly on outside of packaging.
 - C. Coordinate schedule of product delivery to designated prepared areas in order to minimize site storage time and potential damage to stored materials.
 - D. Transport and handle products in accordance with manufacturer's instructions.
 - E. Transport materials in covered trucks to prevent contamination of product and littering of surrounding areas.
 - F. Promptly inspect shipments to ensure that products comply with requirements, quantities are correct, and products are undamaged.
 - G. Provide equipment and personnel to handle products by methods to prevent soiling, disfigurement, or damage, and to minimize handling.
 - H. Arrange for the return of packing materials, such as wood pallets, where economically feasible.

3.4 STORAGE AND PROTECTION

- A. Designate receiving/storage areas for incoming products so that they are delivered according to installation schedule and placed convenient to work area in order to minimize waste due to excessive materials handling and misapplication.
- B. Store and protect products in accordance with manufacturers' instructions.
- C. Store with seals and labels intact and legible.
- D. Store sensitive products in weather tight, climate controlled, enclosures in an environment favorable to product.
- E. For exterior storage of fabricated products, place on sloped supports above ground.
- F. Provide bonded off-site storage and protection when site does not permit on-site storage or protection.
- G. Protect products from damage or deterioration due to construction operations, weather, precipitation, humidity, temperature, sunlight and ultraviolet light, dirt, dust, and other contaminants.
- H. Comply with manufacturer's warranty conditions, if any.
- I. Do not store products directly on the ground.
- J. Cover products subject to deterioration with impervious sheet covering. Provide ventilation to prevent condensation and degradation of products.
- K. Store loose granular materials on solid flat surfaces in a well-drained area. Prevent mixing with foreign matter.
- L. Prevent contact with material that may cause corrosion, discoloration, or staining.
- M. Provide equipment and personnel to store products by methods to prevent soiling, disfigurement, or damage.
- N. Arrange storage of products to permit access for inspection. Periodically inspect to verify products are undamaged and are maintained in acceptable condition.
SECTION 01 61 16 - VOLATILE ORGANIC COMPOUND (VOC) CONTENT RESTRICTIONS

PART 1 GENERAL

- 1.1 SECTION INCLUDES
 - A. Requirements for VOC-Content-Restricted products.

1.2 RELATED REQUIREMENTS

- A. Section 01 30 00 Administrative Requirements: Submittal procedures.
- B. Section 01 40 00 Quality Requirements: Procedures for testing and certifications.
- C. Section 01 60 00 Product Requirements: Fundamental product requirements, substitutions and product options, delivery, storage, and handling.
- D. Section 07 92 00 Joint Sealants: Emissions-compliant sealants.

1.3 DEFINITIONS

- A. VOC-Content-Restricted Products: All products in the following product categories, whether specified or not:
 - 1. Exterior and interior paints and coatings.
 - 2. Exterior and interior adhesives and sealants, including flooring adhesives.
 - 3. Other products when specifically stated in the specifications.
- B. Interior of Building: Anywhere inside the exterior weather barrier.
- C. Adhesives: All gunnable, trowelable, liquid-applied, and aerosol adhesives, whether specified or not; including flooring adhesives, resilient base adhesives, and pipe jointing adhesives.
- D. Sealants: All gunnable, trowelable, and liquid-applied joint sealants and sealant primers, whether specified or not; including firestopping sealants and duct joint sealers.

1.4 REFERENCE STANDARDS

- A. 40 CFR 59, Subpart D National Volatile Organic Compound Emission Standards for Architectural Coatings; U.S. Environmental Protection Agency; current edition.
- B. ASTM D3960 Standard Practice for Determining Volatile Organic Compound (VOC) Content of Paints and Related Coatings; 2005 (Reapproved 2013).
- C. CARB (SCM) Suggested Control Measure for Architectural Coatings; California Air Resources Board; 2007.
- D. GreenSeal GS-36 Commercial Adhesives; 2011.
- E. SCAQMD 1113 South Coast Air Quality Management District Rule No.1113; current edition.
- F. SCAQMD 1168 South Coast Air Quality Management District Rule No.1168; current edition.
- G. County of San Diego Air Pollution Control District (SDAPCD) Rules and Regulations.

1.5 SUBMITTALS

- A. See Section 01 30 00 Administrative Requirements, for submittal procedures.
- B. Product Data: For each VOC-restricted product used in the project, submit evidence of compliance.
- 1.6 QUALITY ASSURANCE
 - A. VOC Content Test Method: 40 CFR 59, Subpart D (EPA Method 24), or ASTM D3960, unless otherwise indicated.
 - 1. Evidence of Compliance: Acceptable types of evidence are:
 - a. Report of laboratory testing performed in accordance with requirements.
 - b. Published product data showing compliance with requirements.

- c. Certification by manufacturer that product complies with requirements.
- B. Testing Agency Qualifications: Independent firm specializing in performing testing and inspections of the type specified in this section.

PART 2 PRODUCTS

2.1 MATERIALS

- A. All Products: Comply with the most stringent of federal, State, and local requirements, or these specifications.
- B. VOC-Content-Restricted Products: VOC content not greater than required by the following:
 - 1. Adhesives, Including Flooring Adhesives: SCAQMD 1168 Rule.
 - 2. Aerosol Adhesives: GreenSeal GS-36.
 - 3. Joint Sealants: SCAQMD 1168 Rule.
 - 4. Paints and Coatings: Each color; most stringent of the following:
 - a. 40 CFR 59, Subpart D.
 - b. SCAQMD 1113 Rule.
 - c. CARB (SCM).
 - 5. Wet-Applied Waterproofing: Comply with requirements for paints and coatings.

PART 3 EXECUTION - NOT USED

- 3.1 FIELD QUALITY CONTROL
 - A. Owner reserves the right to reject non-compliant products, whether installed or not, and require their removal and replacement with compliant products at no extra cost to Owner.
 - B. Additional costs to restore indoor air quality due to installation of non-compliant products will be borne by Contractor.

SECTION 01 70 00 - EXECUTION AND CLOSEOUT REQUIREMENTS

PART 1 GENERAL

- 1.1 SECTION INCLUDES
 - A. Examination, preparation, and general installation procedures.
 - B. Requirements for alterations work, including selective demolition.
 - C. Pre-installation meetings.
 - D. Cutting and patching.
 - E. Surveying for laying out the work.
 - F. Cleaning and protection.
 - G. Starting of systems and equipment.
 - H. Demonstration and instruction of Owner personnel.
 - I. Closeout procedures, including Contractor's Correction Punch List, except payment procedures.
 - J. General requirements for maintenance service.

1.2 RELATED REQUIREMENTS

- A. Section 01 10 00 Summary: Limitations on working in existing building; continued occupancy; work sequence; identification of salvaged and relocated materials.
- B. Section 01 30 00 Administrative Requirements: Submittals procedures.
- C. Section 01 40 00 Quality Requirements: Testing and inspection procedures.
- D. Section 01 50 00 Temporary Facilities and Controls: Temporary exterior enclosures.
- E. Section 01 50 00 Temporary Facilities and Controls: Temporary interior partitions.
- F. Section 01 74 19 Construction Waste Management and Disposal: Additional procedures for trash/waste removal, recycling, salvage, and reuse.
- G. Section 01 78 00 Closeout Submittals: Project record documents, operation and maintenance data, warranties and bonds.
- H. Section 01 79 00 Demonstration and Training: Demonstration of products and systems to be commissioned and where indicated in specific specification sections
- I. Section 01 91 13 General Commissioning Requirements: Contractor's responsibilities in regard to commissioning.
- J. Section 02 41 00 Demolition: Demolition of whole structures and parts thereof; site utility demolition.
- K. Individual Product Specification Sections:
 - 1. Advance notification to other sections of openings required in work of those sections.
 - 2. Limitations on cutting structural members.

1.3 REFERENCE STANDARDS

A. NFPA 241 - Standard for Safeguarding Construction, Alteration, and Demolition Operations; 2013.

1.4 SUBMITTALS

- A. See Section 01 30 00 Administrative Requirements, for submittal procedures.
- B. Survey work: Submit name, address, and telephone number of Surveyor before starting survey work.
 - 1. On request, submit documentation verifying accuracy of survey work.
 - 2. Submit a copy of site drawing signed by the Land Surveyor, that the elevations and locations of the work are in conformance with Contract Documents.
 - 3. Submit surveys and survey logs for the project record.

- C. Demolition Plan: Submit demolition plan as specified by OSHA and local authorities.
 - 1. Indicate extent of demolition, removal sequence, bracing and shoring, and location and construction of barricades and fences. Include design drawings and calculations for bracing and shoring.
 - 2. Identify demolition firm and submit qualifications.
 - 3. Include a summary of safety procedures.
- D. Cutting and Patching: Submit written request in advance of cutting or alteration that affects:
 - 1. Structural integrity of any element of Project.
 - 2. Integrity of weather exposed or moisture resistant element.
 - 3. Efficiency, maintenance, or safety of any operational element.
 - 4. Visual qualities of sight exposed elements.
 - 5. Work of Owner or separate Contractor.
 - 6. Include in request:
 - a. Identification of Project.
 - b. Location and description of affected work.
 - c. Necessity for cutting or alteration.
 - d. Description of proposed work and products to be used.
 - e. Alternatives to cutting and patching.
 - f. Effect on work of Owner or separate Contractor.
 - g. Written permission of affected separate Contractor.
 - h. Date and time work will be executed.
- E. Project Record Documents: Accurately record actual locations of capped and active utilities.

1.5 QUALIFICATIONS

- A. For demolition work, employ a firm specializing in the type of work required.
 - 1. Minimum of two years of documented experience.
- B. For survey work, employ a land surveyor registered in the State in which the Project is located and acceptable to Architect. Submit evidence of Surveyor's Errors and Omissions insurance coverage in the form of an Insurance Certificate.
- C. For field engineering, employ a professional engineer of the discipline required for specific service on Project, licensed in the State in which the Project is located.
- D. For design of temporary shoring and bracing, employ a Professional Engineer experienced in design of this type of work and licensed in the State in which the Project is located.
- E. For final cleaning, employ experienced workers or professional cleaners.

1.6 PROJECT CONDITIONS

- A. Use of explosives is not permitted.
- B. Grade site to drain. Maintain excavations free of water. Provide, operate, and maintain pumping equipment.
- C. Protect site from puddling or running water. Provide water barriers as required to protect site from soil erosion.
- D. Ventilate enclosed areas to assist cure of materials, to dissipate humidity, and to prevent accumulation of dust, fumes, vapors, or gases.
- E. Dust Control: Execute work by methods to minimize raising dust from construction operations. Provide positive means to prevent air-borne dust from dispersing into atmosphere and over adjacent property.
 - 1. Provide dust-proof enclosures to prevent entry of dust generated outdoors.
 - 2. Provide dust-proof barriers between construction areas and areas continuing to be occupied by Owner.
- F. Erosion and Sediment Control: Plan and execute work by methods to control surface drainage from cuts and fills, from borrow and waste disposal areas. Prevent erosion and sedimentation.
 - 1. Minimize amount of bare soil exposed at one time.

- 2. Provide temporary measures such as berms, dikes, and drains, to prevent water flow.
- 3. Construct fill and waste areas by selective placement to avoid erosive surface silts or clays.
- 4. Periodically inspect earthwork to detect evidence of erosion and sedimentation; promptly apply corrective measures.
- G. Noise Control: Provide methods, means, and facilities to minimize noise produced by construction operations.
 - 1. Outdoors: Limit conduct of especially noisy exterior work to the hours of 8 am to 5 pm.
- H. Pest and Rodent Control: Provide methods, means, and facilities to prevent pests and insects from damaging the work.
- I. Rodent Control: Provide methods, means, and facilities to prevent rodents from accessing or invading premises.
- J. Pollution Control: Provide methods, means, and facilities to prevent contamination of soil, water, and atmosphere from discharge of noxious, toxic substances, and pollutants produced by construction operations. Comply with federal, state, and local regulations.

1.7 COORDINATION

- A. See Section 01 10 00 for occupancy-related requirements.
- B. Coordinate scheduling, submittals, and work of the various sections of the Project Manual to ensure efficient and orderly sequence of installation of interdependent construction elements, with provisions for accommodating items installed later.
- C. Notify affected utility companies and comply with their requirements.
- D. Verify that utility requirements and characteristics of new operating equipment are compatible with building utilities. Coordinate work of various sections having interdependent responsibilities for installing, connecting to, and placing in service, such equipment.
- E. Coordinate space requirements, supports, and installation of mechanical and electrical work that are indicated diagrammatically on drawings. Follow routing indicated for pipes, ducts, and conduit, as closely as practicable; place runs parallel with lines of building. Utilize spaces efficiently to maximize accessibility for other installations, for maintenance, and for repairs.
- F. In finished areas except as otherwise indicated, conceal pipes, ducts, and wiring within the construction. Coordinate locations of fixtures and outlets with finish elements.
- G. Coordinate completion and clean-up of work of separate sections.
- H. After Owner occupancy of premises, coordinate access to site for correction of defective work and work not in accordance with Contract Documents, to minimize disruption of Owner's activities.

PART 2 PRODUCTS

2.1 PATCHING MATERIALS

- A. New Materials: As specified in product sections; match existing products and work for patching and extending work.
 - 1. All products shall be new, unless specifically noted otherwise.
 - 2. Do not use products containing asbestos or other hazardous materials.
- B. Type and Quality of Existing Products: Determine by inspecting and testing products where necessary, referring to existing work as a standard.
- C. Product Substitution: For any proposed change in materials, submit request for substitution described in Section 01 60 00 Product Requirements.

PART 3 EXECUTION

3.1 EXAMINATION

A. Verify that existing site conditions and substrate surfaces are acceptable for subsequent work. Start of work means acceptance of existing conditions.

- B. Verify that existing substrate is capable of structural support or attachment of new work being applied or attached.
- C. Examine and verify specific conditions described in individual specification sections.
- D. Take field measurements before confirming product orders or beginning fabrication, to minimize waste due to over-ordering or misfabrication.
- E. Verify that utility services are available, of the correct characteristics, and in the correct locations.
 - 1. Locate and identify existing utility, service and irrigation system components affected by work of this contract. Review existing record drawings, conduct site investigations, contact Underground Service Alert and other qualified on-site cable/pipe/line locator services, and implement all other means necessary to define the location of underground systems.
- F. Prior to Cutting: Examine existing conditions prior to commencing work, including elements subject to damage or movement during cutting and patching. After uncovering existing work, assess conditions affecting performance of work. Beginning of cutting or patching means acceptance of existing conditions.

3.2 PREPARATION

- A. Clean substrate surfaces prior to applying next material or substance.
- B. Seal cracks or openings of substrate prior to applying next material or substance.
- C. Apply manufacturer required or recommended substrate primer, sealer, or conditioner prior to applying any new material or substance in contact or bond.

3.3 PREINSTALLATION MEETINGS

- A. When required in individual specification sections, convene a preinstallation meeting at the site prior to commencing work of the section.
- B. Require attendance of parties directly affecting, or affected by, work of the specific section.
- C. Notify Architect four days in advance of meeting date.
- D. Prepare agenda and preside at meeting:
 - 1. Review conditions of examination, preparation and installation procedures.
 - 2. Review coordination with related work.
- E. Record minutes and distribute copies within two days after meeting to participants, with two copies to Architect, Owner, participants, and those affected by decisions made.

3.4 LAYING OUT THE WORK

- A. Verify locations of survey control points prior to starting work.
- B. Promptly notify Architect of any discrepancies discovered.
- C. Contractor shall locate and protect survey control and reference points.
- D. Control datum for survey is that established by Owner provided survey.
- E. Protect survey control points prior to starting site work; preserve permanent reference points during construction.
- F. Promptly report to Architect the loss or destruction of any reference point or relocation required because of changes in grades or other reasons.
- G. Replace dislocated survey control points based on original survey control. Make no changes without prior written notice to Architect.
- H. Utilize recognized engineering survey practices.
- I. Establish a minimum of two permanent bench marks on site, referenced to established control points. Record locations, with horizontal and vertical data, on project record documents.
- J. Establish elevations, lines and levels. Locate and lay out by instrumentation and similar appropriate means:

- 1. Site improvements including pavements; stakes for grading, fill and topsoil placement; utility locations, slopes, and invert elevations.
- 2. Grid or axis for structures.
- 3. Building foundation, column locations, ground floor elevations.
- K. Periodically verify layouts by same means.
- L. Maintain a complete and accurate log of control and survey work as it progresses.
- M. On completion of foundation walls and major site improvements, prepare a certified survey illustrating dimensions, locations, angles, and elevations of construction and site work.

3.5 GENERAL INSTALLATION REQUIREMENTS

- A. In addition to compliance with regulatory requirements, conduct construction operations in compliance with NFPA 241, including applicable recommendations in Appendix A.
- B. Install products as specified in individual sections, in accordance with manufacturer's instructions and recommendations, and so as to avoid waste due to necessity for replacement.
- C. Make vertical elements plumb and horizontal elements level, unless otherwise indicated.
- D. Install equipment and fittings plumb and level, neatly aligned with adjacent vertical and horizontal lines, unless otherwise indicated.
- E. Make consistent texture on surfaces, with seamless transitions, unless otherwise indicated.
- F. Make neat transitions between different surfaces, maintaining texture and appearance.

3.6 ALTERATIONS

- A. Drawings showing existing construction and utilities are based on casual field observation and existing record documents only.
 - 1. Verify that construction and utility arrangements are as indicated.
 - 2. Report discrepancies to Architect before disturbing existing installation.
 - 3. Beginning of alterations work constitutes acceptance of existing conditions.
- B. Keep areas in which alterations are being conducted separated from other areas that are still occupied.
 - 1. Provide, erect, and maintain temporary dustproof partitions of construction specified in Section 01 50 00 in locations indicated on drawings.
 - 2. Provide sound retardant partitions of construction indicated on drawings in locations indicated on drawings.
- C. Maintain all fire resistance ratings of existing assemblies and materials.
- D. Maintain weatherproof exterior building enclosure except for interruptions required for replacement or modifications; take care to prevent water and humidity damage.
 - 1. Where openings in exterior enclosure exist, provide construction to make exterior enclosure weatherproof.
 - 2. Insulate existing ducts or pipes that are exposed to outdoor ambient temperatures by alterations work.
- E. Remove existing work as indicated and as required to accomplish new work.
 - 1. Advise Architect of any rotted wood, corroded metals, deteriorated masonry and concrete, or other deficiencies, damage or degradation in existing structure, including in plumbing, heating, ventilating, air conditioning, and electrical systems, and obtain direction for further action.
 - 2. Remove items indicated on drawings.
 - 3. Relocate items indicated on drawings.
 - 4. Where new surface finishes are to be applied to existing work, perform removals, patch, and prepare existing surfaces as required to receive new finish; remove existing finish if necessary for successful application of new finish.
 - 5. Where new surface finishes are not specified or indicated, patch holes and damaged surfaces to match adjacent finished surfaces as closely as possible.
- F. Services (Including but not limited to HVAC, Plumbing, and Electrical): Remove, relocate, and extend existing systems to accommodate new construction.

- 1. Maintain existing active systems that are to remain in operation; maintain access to equipment and operational components; if necessary, modify installation to allow access or provide access panel.
- 2. Where existing systems or equipment are not active and Contract Documents require reactivation, put back into operational condition; repair supply, distribution, and equipment as required.
- 3. Where existing active systems serve occupied facilities but are to be replaced with new services, maintain existing systems in service until new systems are complete and ready for service.
 - a. Prior to beginning any cutting or patching affecting identified utilities, properly disconnect all water, gas and electrical power supply at appropriate disconnect locations. Obtain all necessary releases and approvals from serving utility companies.
 - b. Prior to disconnect, obtain Owner's written acknowledgment that such system does not impact facilities or systems beyond the extent of this contract.
 - c. Disable existing systems only to make switchovers and connections; minimize duration of outages.
 - d. See Section 01 10 00 for other limitations on outages and required notifications.
 - e. Provide temporary connections as required to maintain existing systems in service.
- 4. Verify that abandoned services serve only abandoned facilities.
- 5. Remove abandoned pipe, ducts, conduits, and equipment; remove back to source of supply where possible, otherwise cap stub and tag with identification; patch holes left by removal using materials specified for new construction.
- 6. Mark location of disconnected systems. Identify and indicate stub-out locations on Project Record Documents.
- G. Protect existing work to remain.
 - 1. Prevent movement of structure; provide shoring and bracing if necessary.
 - 2. Perform cutting to accomplish removals neatly and as specified for cutting new work.
 - 3. Repair adjacent construction and finishes damaged during removal work.
- H. Adapt existing work to fit new work: Make as neat and smooth transition as possible.
 - 1. When existing finished surfaces are cut so that a smooth transition with new work is not possible, terminate existing surface along a straight line at a natural line of division and make recommendation to Architect.
 - 2. Where removal of partitions or walls results in adjacent spaces becoming one, rework floors, walls, and ceilings to a smooth plane without breaks, steps, or bulkheads.
 - 3. Where a change of plane of 1/4 inch or more occurs in existing work along the indicated Path of Travel, submit recommendation for providing a smooth transition for Architect review and request instructions.
- I. Patching: Where the existing surface is not indicated to be refinished, patch to match the surface finish that existed prior to cutting. Where the surface is indicated to be refinished, patch so that the substrate is ready for the new finish.
- J. Refinish existing surfaces as indicated:
 - 1. Where rooms or spaces are indicated to be refinished, refinish all visible existing surfaces to remain to the specified condition for each material, with a neat transition to adjacent finishes.
 - 2. If mechanical or electrical work is exposed accidentally during the work, re-cover and refinish to match.
- K. Clean existing systems and equipment.
- L. Remove demolition debris and abandoned items from alterations areas and dispose of off-site; do not burn or bury.
- M. Do not begin new construction in alterations areas before demolition is complete.
- N. Comply with all other applicable requirements of this section.

3.7 CUTTING AND PATCHING

A. Whenever possible, execute the work by methods that avoid cutting or patching.

- B. See Alterations article above for additional requirements.
- C. Perform whatever cutting and patching is necessary to:
 - 1. Complete the work.
 - 2. Fit products together to integrate with other work.
 - 3. Provide openings for penetration of mechanical, electrical, and other services.
 - 4. Match work that has been cut to adjacent work.
 - 5. Repair areas adjacent to cuts to required condition.
 - 6. Repair new work damaged by subsequent work.
 - 7. Remove samples of installed work for testing when requested.
 - 8. Remove and replace defective and non-conforming work.
- D. Execute work by methods that avoid damage to other work and that will provide appropriate surfaces to receive patching and finishing. In existing work, minimize damage and restore to original condition.
- E. Employ original installer to perform cutting for weather exposed and moisture resistant elements, and sight exposed surfaces.
- F. Cut rigid materials using masonry saw or core drill. Pneumatic tools not allowed without prior approval.
- G. Restore work with new products in accordance with requirements of Contract Documents.
- H. Fit work air tight to pipes, sleeves, ducts, conduit, and other penetrations through surfaces.
- I. At penetrations of fire rated walls, partitions, ceiling, or floor construction, completely seal voids with fire rated material, to full thickness of the penetrated element.
- J. Patching:
 - 1. Finish patched surfaces to match finish that existed prior to patching. On continuous surfaces, refinish to nearest intersection or natural break. For an assembly, refinish entire unit.
 - 2. Match color, texture, and appearance.
 - 3. Repair patched surfaces that are damaged, lifted, discolored, or showing other imperfections due to patching work. If defects are due to condition of substrate, repair substrate prior to repairing finish.

3.8 PROGRESS CLEANING

- A. Maintain areas free of waste materials, debris, and rubbish. Maintain site in a clean and orderly condition.
- B. Remove debris and rubbish from pipe chases, plenums, attics, crawl spaces, and other closed or remote spaces, prior to enclosing the space.
- C. Broom and vacuum clean interior areas prior to start of surface finishing, and continue cleaning to eliminate dust.
- D. Collect and remove waste materials, debris, and trash/rubbish from site periodically and dispose off-site; do not burn or bury.

3.9 PROTECTION OF INSTALLED WORK

- A. Protect installed work from damage by construction operations.
- B. Take all means required to prevent damage to project, including interior areas, resulting from inclement weather, water, wind or other environmental impacts. Provide temporary coverings or enclosures as required for all roof and wall penetrations. Where condensation moisture, rain, or high winds is forecast or present, Contractor shall take all means to eliminate or prevent damage to the Work and to adjacent property, including covering unprotected surfaces, making all openings weathertight, removing loose materials, tools, or equipment from exposed locations, and removing or securing scaffolding.
- C. Provide special protection where specified in individual specification sections.

- D. Provide temporary and removable protection for installed products. Control activity in immediate work area to prevent damage.
- E. Provide protective coverings at walls, projections, jambs, sills, and soffits of openings.
- F. Protect finished floors, stairs, and other surfaces from traffic, dirt, wear, damage, or movement of heavy objects, by protecting with durable sheet materials.
- G. Protect work from spilled liquids. If work is exposed to spilled liquids, immediately remove protective coverings, dry out work, and replace protective coverings.
- H. Prohibit traffic or storage upon waterproofed or roofed surfaces. If traffic or activity is necessary, obtain recommendations for protection from waterproofing or roofing material manufacturer.
- I. Prohibit traffic from landscaped areas.
- J. Remove protective coverings when no longer needed; reuse or recycle coverings if possible.

3.10 SYSTEM STARTUP

- A. Coordinate with requirements of Section 01 91 13 General Commissioning Requirements, and 01 79 00 Demonstration and Training.
- B. Coordinate schedule for start-up of various equipment and systems.
- C. Notify Architect and owner two working days prior to start-up of each item.
- D. Verify that each piece of equipment or system has been checked for proper lubrication, drive rotation, belt tension, control sequence, and for conditions that may cause damage.
- E. Verify tests, meter readings, and specified electrical characteristics agree with those required by the equipment or system manufacturer.
- F. Verify that wiring and support components for equipment are complete and tested.
- G. Execute start-up under supervision of applicable Contractor personnel and manufacturer's representative in accordance with manufacturers' instructions.
- H. When specified in individual specification Sections, require manufacturer to provide authorized representative to be present at site to inspect, check, and approve equipment or system installation prior to start-up, and to supervise placing equipment or system in operation.
- I. Submit a written report that equipment or system has been properly installed and is functioning correctly.
- 3.11 DEMONSTRATION AND INSTRUCTION
 - A. See Section 01 79 00 Demonstration and Training.
- 3.12 ADJUSTING
 - A. Adjust operating products and equipment to ensure smooth and unhindered operation.
- 3.13 FINAL CLEANING
 - A. Execute final cleaning prior to final project assessment.
 - 1. Clean areas to be occupied by Owner prior to final completion before Owner occupancy.
 - B. Use only cleaning materials recommended by the manufacturers of the items being cleaned and comply with manufacturer's instructions for items being cleaned.
 - C. Use cleaning materials that are nonhazardous.
 - D. Use cleaning materials only on surfaces recommended by cleaning material manufacturer.
 - E. Comply with regulations of authorities having jurisdiction and safety standards for cleaning.
 - F. Clean interior and exterior glass, surfaces exposed to view; remove temporary labels, stains and foreign substances, polish transparent and glossy surfaces,
 - 1. Where stain cannot be removed, replace item to satisfaction of the Owner and Architect.
 - G. Wet wipe painted and prefinished surfaces. Do not leave residue or wipe marks.

- H. Remove all labels that are not permanent. Do not paint or otherwise cover fire test labels or nameplates on mechanical and electrical equipment.
- I. Clean equipment and fixtures to a sanitary condition with cleaning materials appropriate to the surface and material being cleaned.
- J. Clean filters of operating equipment.
- K. Where HVAC system was operated during construction, clean permanent filters and replace disposable filters immediately prior to final inspection. Clean ducts, blowers, and coils if units were operated without filters during construction.
- L. Clean debris from area drains and drainage systems. Do not discharge volatile, harmful or dangerous materials into drainage systems.
- M. Clean site; sweep paved areas, rake clean landscaped surfaces.
- N. Clean all sealant joints and similar applications.
- O. Remove asphalt and seal coat splatter from curb faces.
- P. Remove waste, surplus materials, trash/rubbish, and construction facilities from the site; dispose of in legal manner; do not burn or bury.

3.14 CLOSEOUT PROCEDURES

- A. Make submittals that are required by governing or other authorities.
 - 1. Provide copies to Architect and Owner.
- B. Accompany Owner's Representative on preliminary inspection to determine items to be listed for completion or correction in the Contractor's Correction Punch List for Contractor's comprehensive list of items to be completed or corrected.
- C. Notify Architect when work is considered ready for Architect's Substantial Completion inspection. Submit written notice containing Contractor's Correction Punch List.
- D. The Architect and Architect's Consultants will then conduct an inspection in order to determine the acceptance of work and identify remaining items to complete. The Architect will prepare a Punch List of such items and transmit to Contractor.
- E. If Architect determines that punch list items remaining are sufficiently minor and that Owner can occupy work and use it for its intended purpose, then Architect will prepare a Certificate of Substantial Completion for Owner's signature. Owner will occupy building as specified in Section 01 10 00.
 - 1. If work is not substantially complete, Contractor shall continue construction until such time as project status justifies subsequent inspection. Costs incurred from subsequent inspections by Architect and Architect's Consultants shall be paid by Contractor through Owner-Contractor contract adjustment.
- F. Correct items of work listed in Final Correction Punch List and comply with requirements for access to Owner-occupied areas.
- G. Notify Architect when work is considered finally complete and ready for Architect's Substantial Completion final inspection. Submit written certification that Contract Documents have been reviewed, work has been inspected, and that work is complete in accordance with Contract Documents and ready for Architect's final inspection.
- H. Upon receipt of request for final inspection, Architect will perform a Final Inspection and recommend actions as defined by the General Conditions.
- I. If Architect determines work is acceptable under the Contract Documents, Contractor shall submit Final Application for Payment and closeout submittals in accordance with the General Conditions.
 - 1. Contractor shall submit Final Application for Payment identifying total adjusted Contract Sum, previous payments, and sum remaining due.

3.15 MAINTENANCE

A. Provide service and maintenance of components indicated in specification sections.

- B. Maintenance Period: As indicated in specification sections or, if not indicated, not less than one year from the Date of Substantial Completion or the length of the specified warranty, whichever is longer.
- C. Examine system components at a frequency consistent with reliable operation. Clean, adjust, and lubricate as required.
- D. Include systematic examination, adjustment, and lubrication of components. Repair or replace parts whenever required. Use parts produced by the manufacturer of the original component.
- E. Maintenance service shall not be assigned or transferred to any agent or subcontractor without prior written consent of the Owner.

SECTION 01 74 19 - CONSTRUCTION WASTE MANAGEMENT AND DISPOSAL

PART 1 GENERAL

- 1.1 WASTE MANAGEMENT REQUIREMENTS
 - A. Owner requires that this project generate the least amount of trash and waste possible.
 - B. Employ processes that ensure the generation of as little waste as possible due to error, poor planning, breakage, mishandling, contamination, or other factors.
 - C. Minimize trash/waste disposal in landfills; reuse, salvage, or recycle as much waste as economically feasible.
 - D. Contractor shall submit periodic Waste Disposal Reports; all landfill disposal, recycling, salvage, and reuse must be reported regardless of to whom the cost or savings accrues; use the same units of measure on all reports.
 - E. Contractor shall develop and follow a Waste Management Plan designed to implement these requirements.
 - F. The following sources may be useful in developing the Waste Management Plan:
 - 1. State of California's Department of Resources Recycling and Recovery (CalRecycle), at www.calrecycle.ca.gov/condemo/.
 - 2. The Whole Building Design Guide Construction Waste Management Database: https://www.wbdg.org/tools/cwm.php.
 - 3. City of Oceanside: www.ci.oceanside.ca.us/gov/water/services_programs/recycling/
 - G. Methods of trash/waste disposal that are not acceptable are:
 - 1. Burning on the project site.
 - 2. Burying on the project site.
 - 3. Dumping or burying on other property, public or private.
 - 4. Other illegal dumping or burying.
 - 5. Incineration, either on- or off-site.
 - H. Regulatory Requirements: Contractor is responsible for knowing and complying with regulatory requirements, including but not limited to Federal, state and local requirements, pertaining to legal disposal of all construction and demolition waste materials.

1.2 RELATED REQUIREMENTS

- A. Section 01 10 00 Summary: List of items to be salvaged from the existing building for relocation in project or for Owner.
- B. Section 01 30 00 Administrative Requirements: Additional requirements for project meetings, reports, submittal procedures, and project documentation.
- C. Section 01 50 00 Temporary Facilities and Controls: Additional requirements related to trash/waste collection and removal facilities and services.
- D. Section 01 60 00 Product Requirements: Waste prevention requirements related to delivery, storage, and handling.
- E. Section 01 70 00 Execution and Closeout Requirements: Trash/waste prevention procedures related to demolition, cutting and patching, installation, protection, and cleaning.
- F. Section 31 10 00 Site Clearing: Handling and disposal of land clearing debris.

1.3 DEFINITIONS

- A. Clean: Untreated and unpainted; not contaminated with oils, solvents, caulk, or the like.
- B. Construction and Demolition Waste: Solid wastes typically including building materials, packaging, trash, debris, and rubble resulting from construction, remodeling, repair and demolition operations.
- C. Hazardous: Exhibiting the characteristics of hazardous substances, i.e., ignitibility, corrosivity, toxicity or reactivity.

- D. Nonhazardous: Exhibiting none of the characteristics of hazardous substances, i.e., ignitibility, corrosivity, toxicity, or reactivity.
- E. Nontoxic: Neither immediately poisonous to humans nor poisonous after a long period of exposure.
- F. Recyclable: The ability of a product or material to be recovered at the end of its life cycle and remanufactured into a new product for reuse by others.
- G. Recycle: To remove a waste material from the project site to another site for remanufacture into a new product for reuse by others.
- H. Recycling: The process of sorting, cleansing, treating and reconstituting solid waste and other discarded materials for the purpose of using the altered form. Recycling does not include burning, incinerating, or thermally destroying waste.
- I. Return: To give back reusable items or unused products to vendors for credit.
- J. Reuse: To reuse a construction waste material in some manner on the project site.
- K. Salvage: To remove a waste material from the project site to another site for resale or reuse by others.
- L. Sediment: Soil and other debris that has been eroded and transported by storm or well production run-off water.
- M. Source Separation: The act of keeping different types of waste materials separate beginning from the first time they become waste.
- N. Toxic: Poisonous to humans either immediately or after a long period of exposure.
- O. Trash: Any product or material unable to be reused, returned, recycled, or salvaged.
- P. Waste: Extra material or material that has reached the end of its useful life in its intended use. Waste includes salvageable, returnable, recyclable, and reusable material.

1.4 SUBMITTALS

- A. See Section 01 30 00 Administrative Requirements, for submittal procedures.
- B. Submit Waste Management Plan within 30 calendar days after receipt of Notice to Proceed, or prior to any trash or waste removal, whichever occurs sooner; submit projection of all trash and waste that will require disposal and alternatives to landfilling.
- C. Waste Management Plan: Include the following information:
 - 1. Analysis of the trash and waste projected to be generated during the entire project construction cycle, including types and quantities.
 - 2. Landfill Options: The name, address, and telephone number of the landfill(s) where trash/waste will be disposed of, the applicable landfill tipping fee(s), and the projected cost of disposing of all project trash/waste in the landfill(s).
 - 3. Landfill Alternatives: List all waste materials that will be diverted from landfills by reuse, salvage, or recycling.
 - a. List each material proposed to be salvaged, reused, or recycled.
 - b. List the local market for each material.
 - c. State the estimated net cost, versus landfill disposal.
 - 4. Meetings: Describe regular meetings to be held to address waste prevention, reduction, recycling, salvage, reuse, and disposal.
 - 5. Materials Handling Procedures: Describe the means by which materials to be diverted from landfills will be protected from contamination and prepared for acceptance by designated facilities; include separation procedures for recyclables, storage, and packaging.
 - 6. Transportation: Identify the destination and means of transportation of materials to be recycled; i.e. whether materials will be site-separated and self-hauled to designated centers, or whether mixed materials will be collected by a waste hauler.
- D. Waste Disposal Reports: Submit at specified intervals, with details of quantities of trash and waste, means of disposal or reuse, and costs; show both totals to date and since last report.

- 1. Submit updated Report with each Application for Progress Payment; failure to submit Report will delay payment.
- 2. Submit Report on a form acceptable to Owner.
- 3. Landfill Disposal: Include the following information:
 - a. Identification of material.
 - b. Amount, in tons or cubic yards, of trash/waste material from the project disposed of in landfills.
 - c. State the identity of landfills, total amount of tipping fees paid to landfill, and total disposal cost.
 - d. Include manifests, weight tickets, receipts, and invoices as evidence of quantity and cost.
- 4. Recycled and Salvaged Materials: Include the following information for each:
 - a. Identification of material, including those retrieved by installer for use on other projects.
 - b. Amount, in tons or cubic yards, date removed from the project site, and receiving party.
 - c. Transportation cost, amount paid or received for the material, and the net total cost or savings of salvage or recycling each material.
 - d. Include manifests, weight tickets, receipts, and invoices as evidence of quantity and cost.
 - e. Certification by receiving party that materials will not be disposed of in landfills or by incineration.
- 5. Material Reused on Project: Include the following information for each:
 - a. Identification of material and how it was used in the project.
 - b. Amount, in tons or cubic yards.
 - c. Include weight tickets as evidence of quantity.
- 6. Other Disposal Methods: Include information similar to that described above, as appropriate to disposal method.

PART 2 PRODUCTS

- 2.1 PRODUCT SUBSTITUTIONS
 - A. See Section 01 60 00 Product Requirements for substitution submission procedures.
 - B. For each proposed product substitution, submit the following information in addition to requirements specified in Section 01 60 00:
 - 1. Relative amount of waste produced, compared to specified product.
 - 2. Cost savings on waste disposal, compared to specified product, to be deducted from the Contract Sum.
 - 3. Proposed disposal method for waste product.
 - 4. Markets for recycled waste product.

PART 3 EXECUTION

- 3.1 WASTE MANAGEMENT PROCEDURES
 - A. See Section 01 10 00 for list of items to be salvaged from the existing building for relocation in project or for Owner.
 - B. See Section 01 30 00 for additional requirements for project meetings, reports, submittal procedures, and project documentation.
 - C. See Section 01 50 00 for additional requirements related to trash/waste collection and removal facilities and services.
 - D. See Section 01 60 00 for waste prevention requirements related to delivery, storage, and handling.
 - E. See Section 01 70 00 for trash/waste prevention procedures related to demolition, cutting and patching, installation, protection, and cleaning.

3.2 WASTE MANAGEMENT PLAN IMPLEMENTATION

- A. Manager: Designate an on-site person or persons responsible for instructing workers and overseeing and documenting results of the Waste Management Plan.
- B. Communication: Distribute copies of the Waste Management Plan to job site foreman, each subcontractor, Owner, and Architect.
- C. Instruction: Provide on-site instruction of appropriate separation, handling, and recycling, salvage, reuse, and return methods to be used by all parties at the appropriate stages of the project.
- D. Meetings: Discuss trash/waste management goals and issues at project meetings.
 - 1. Pre-bid meeting.
 - 2. Pre-construction meeting.
 - 3. Regular job-site meetings.
 - 4. Job safety meetings.
- E. Facilities: Provide specific facilities for separation and storage of materials for recycling, salvage, reuse, return, and trash disposal, for use by all contractors and installers.
 - 1. Provide containers as required.
 - 2. Provide temporary enclosures around piles of separated materials to be recycled or salvaged.
 - 3. Provide materials for barriers and enclosures that are nonhazardous, recyclable, or reusable to the maximum extent possible; reuse project construction waste materials if possible.
 - 4. Locate enclosures out of the way of construction traffic.
 - 5. Provide adequate space for pick-up and delivery and convenience to subcontractors.
 - 6. If an enclosed area is not provided, clearly lay out and label a specific area on-site.
 - 7. Keep recycling and trash/waste bin areas neat and clean and clearly marked in order to avoid contamination of materials.
- F. Hazardous Wastes: Separate, store, and dispose of hazardous wastes according to applicable regulations.
- G. Recycling: Separate, store, protect, and handle at the site identified recyclable waste products in order to prevent contamination of materials and to maximize recyclability of identified materials. Arrange for timely pickups from the site or deliveries to recycling facility in order to prevent contamination of recyclable materials.
- H. Reuse of Materials On-Site: Set aside, sort, and protect separated products in preparation for reuse.
- I. Salvage: Set aside, sort, and protect products to be salvaged for reuse off-site.

SECTION 01 78 00 - CLOSEOUT SUBMITTALS

PART 1 GENERAL

- 1.1 SECTION INCLUDES
 - A. Project Record Documents.
 - B. Operation and Maintenance Data.
 - C. Maintenance materials.
 - D. Warranties and bonds.

1.2 RELATED REQUIREMENTS

- A. Section 01 30 00 Administrative Requirements: Submittals procedures, shop drawings, product data, and samples.
- B. Section 01 50 00 Temporary Facilities and Controls: Record Job Set required to be maintained at field office.
- C. Section 01 70 00 Execution and Closeout Requirements: Contract closeout procedures.
- D. Individual Product Sections: Specific requirements for operation and maintenance data.
- E. Individual Product Sections: Warranties required for specific products or Work.

1.3 SUBMITTALS

- A. Project Record Documents: Submit documents to Architect with claim for final Application for Payment.
- B. Operation and Maintenance Data:
 - 1. Submit two copies of preliminary draft or proposed formats and outlines of contents before start of Work. Architect will review draft and return one copy with comments.
 - 2. For equipment, or component parts of equipment put into service during construction and operated by Owner, submit completed documents within ten days after acceptance.
 - 3. Submit two copies of completed documents 15 days prior to final inspection. One copy will be reviewed and returned after final inspection, with Architect comments. Revise content of all document sets as required prior to final submission.
 - 4. Submit two sets of revised final documents in final form within 15 days after final inspection.
- C. Maintenance Materials: Provide products, spare parts, maintenance and extra materials in quantities specified in individual specification sections.
- D. Warranties and Bonds:
 - 1. Submit prior to final Application for Payment.
 - 2. For equipment or component parts of equipment put into service during construction with Owner's permission, submit documents within 10 days after acceptance.
 - 3. Make other submittals within 10 days after Date of Substantial Completion, prior to final Application for Payment.
 - 4. For items of Work for which acceptance is delayed beyond Date of Substantial Completion, submit within 10 days after acceptance, listing the date of acceptance as the beginning of the warranty period.

PART 2 PRODUCTS - NOT USED

PART 3 EXECUTION

- 3.1 PROJECT RECORD DOCUMENTS
 - A. Record Job Set: Maintain on site one set of the following record documents; record actual revisions to the Work:
 - 1. Drawings.

- 2. Specifications.
- 3. Addenda.
- 4. Change Orders and other modifications to the Contract.
- 5. Reviewed shop drawings, product data, and samples.
- 6. Manufacturer's instruction for assembly, installation, and adjusting.
- B. Ensure entries are complete and accurate, enabling future reference by Owner.
- C. Store record documents separate from documents used for construction.
- D. Record information concurrent with construction progress.
- E. Specifications: Legibly mark and record at each product section description of actual products installed, including the following:
 - 1. Manufacturer's name and product model and number.
 - 2. Product substitutions or alternates utilized.
 - 3. Changes made by Addenda and modifications.
- F. Record Drawings and Shop Drawings: Legibly mark each item to record actual construction including:
 - 1. Neatly and accurately transfer data from Record Job Set specified above.
 - 2. Measured depths of foundations in relation to finish first floor datum.
 - 3. Measured horizontal and vertical locations of underground utilities and appurtenances, referenced to permanent surface improvements.
 - 4. Measured locations of internal utilities and appurtenances concealed in construction, referenced to visible and accessible features of the Work.
 - 5. Field changes of dimension and detail.
 - 6. Details not on original Contract drawings.
- G. Sign and date Record Job Sets and Record Drawings, certifying that the information and data added is accurate and complete.
- H. Record Drawings not complying with specified criteria shall be rejected.
- I. Prior to Final Application for Payment, review Record Set with Architect and obtain approval of the scope of transfer. Following approval, submit Record Job Set and Record Set to Architect with Final Application for Payment.

3.2 OPERATION AND MAINTENANCE DATA

- A. Source Data: For each product or system, list names, addresses and telephone numbers of Subcontractors and suppliers, including local source of supplies and replacement parts.
- B. Product Data: Mark each sheet to clearly identify specific products and component parts, and data applicable to installation. Delete inapplicable information.
- C. Drawings: Supplement product data to illustrate relations of component parts of equipment and systems, to show control and flow diagrams. Do not use Project Record Documents as maintenance drawings.
- D. Typed Text: As required to supplement product data. Provide logical sequence of instructions for each procedure, incorporating manufacturer's instructions.

3.3 OPERATION AND MAINTENANCE DATA FOR MATERIALS AND FINISHES

- A. For Each Product, Applied Material, and Finish:
 - 1. Product data, with catalog number, size, composition, and color and texture designations.
 - 2. Information for re-ordering custom manufactured products.
- B. Instructions for Care and Maintenance: Manufacturer's recommendations for cleaning agents and methods, precautions against detrimental cleaning agents and methods, and recommended schedule for cleaning and maintenance.
- C. Moisture protection and weather-exposed products: Include product data listing applicable reference standards, chemical composition, and details of installation. Provide recommendations for inspections, maintenance, and repair.

- D. Additional information as specified in individual product specification sections.
- E. Where additional instructions are required, beyond the manufacturer's standard printed instructions, have instructions prepared by personnel experienced in the operation and maintenance of the specific products.

3.4 OPERATION AND MAINTENANCE DATA FOR EQUIPMENT AND SYSTEMS

- A. For Each Item of Equipment and Each System:
 - 1. Description of unit or system, and component parts.
 - 2. Identify function, normal operating characteristics, and limiting conditions.
 - 3. Include performance curves, with engineering data and tests.
 - 4. Complete nomenclature and model number of replaceable parts.
- B. Where additional instructions are required, beyond the manufacturer's standard printed instructions, have instructions prepared by personnel experienced in the operation and maintenance of the specific products.
- C. Panelboard Circuit Directories: Provide electrical service characteristics, controls, and communications; typed.
- D. Include color coded wiring diagrams as installed.
- E. Operating Procedures: Include start-up, break-in, and routine normal operating instructions and sequences. Include regulation, control, stopping, shut-down, and emergency instructions. Include summer, winter, and any special operating instructions.
- F. Maintenance Requirements: Include routine procedures and guide for preventative maintenance and trouble shooting; disassembly, repair, and reassembly instructions; and alignment, adjusting, balancing, and checking instructions.
- G. Provide servicing and lubrication schedule, and list of lubricants required.
- H. Include manufacturer's printed operation and maintenance instructions.
- I. Include sequence of operation by controls manufacturer.
- J. Provide original manufacturer's parts list, illustrations, assembly drawings, and diagrams required for maintenance.
- K. Provide control diagrams by controls manufacturer as installed.
- L. Provide Contractor's coordination drawings, with color coded piping diagrams as installed.
- M. Provide charts of valve tag numbers, with location and function of each valve, keyed to flow and control diagrams.
- N. Provide list of original manufacturer's spare parts, current prices, and recommended quantities to be maintained in storage.
- O. Include test and balancing reports.
- P. Additional Requirements: As specified in individual product specification sections.

3.5 ASSEMBLY OF OPERATION AND MAINTENANCE MANUALS

- A. Assemble operation and maintenance data into durable manuals for Owner's personnel use, with data arranged in the same sequence as, and identified by, the specification sections.
- B. Where systems involve more than one specification section, provide separate tabbed divider for each system.
- C. Binders: Commercial quality, 8-1/2 by 11 inch three D side ring binders with durable plastic covers; 2 inch maximum ring size. When multiple binders are used, correlate data into related consistent groupings.
- D. Cover: Identify each binder with typed or printed title OPERATION AND MAINTENANCE INSTRUCTIONS; identify title of Project; identify subject matter of contents.
- E. Project Directory: Title and address of Project; names, addresses, and telephone numbers of Architect, Consultants,Contractorand subcontractors, with names of responsible parties.

- F. Tables of Contents: List every item separated by a divider, using the same identification as on the divider tab; where multiple volumes are required, include all volumes Tables of Contents in each volume, with the current volume clearly identified.
- G. Dividers: Provide tabbed dividers for each separate product and system; identify the contents on the divider tab; immediately following the divider tab include a description of product and major component parts of equipment.
- H. Text: Manufacturer's printed data, or typewritten data on 24 pound paper.
- I. Drawings: Provide with reinforced punched binder tab. Bind in with text; fold larger drawings to size of text pages.
- J. Arrangement of Contents: Organize each volume in parts as follows:
 - 1. Project Directory.
 - 2. Table of Contents, of all volumes, and of this volume.
 - 3. Operation and Maintenance Data: Arranged by system, then by product category.
 - a. Source data.
 - b. Product data, shop drawings, and other submittals.
 - c. Operation and maintenance data.
 - d. Field quality control data.
 - e. Photocopies of warranties and bonds.
 - 4. Design Data: To allow for addition of design data furnished by Architect or others, provide a tab labeled "Design Data" and provide a binder large enough to allow for insertion of at least 20 pages of typed text.

3.6 MAINTENANCE MATERIALS

- A. Package in clearly labeled containers; identify manufacturer, product, pattern, color, lot number, date of manufacture, date of installation, and locations used.
- B. Deliver to Project site as directed by Owner; obtain receipt prior to Application for Final Payment.

3.7 WARRANTIES AND BONDS

- A. Obtain warranties and bonds, executed in duplicate by responsible Subcontractors, suppliers, and manufacturers, within 10 days after completion of the applicable item of work. Except for items put into use with Owner's permission, leave date of beginning of time of warranty until Date of Substantial completion is determined.
- B. Assemble all Manufacturer's Warranties and Guarantees with the Owner named as the Beneficiary, including all extended Warranties.
- C. Verify that documents are in proper form, contain full information, and are notarized.
- D. Co-execute submittals when required.
- E. Retain warranties and bonds until time specified for submittal.
- F. Manual: Bind in commercial quality 8-1/2 by 11 inch three D side ring binders with durable plastic covers.
- G. Cover: Identify each binder with typed or printed title WARRANTIES AND BONDS, with title of Project; name, address and telephone number of Contractor and equipment supplier; and nameb of responsible company principal.
- H. Table of Contents: Neatly typed, in the sequence of the Table of Contents of the Project Manual, with each item identified with the number and title of the specification section in which specified, and the name of product or work item.
- I. Separate each warranty or bond with index tab sheets keyed to the Table of Contents listing. Provide full information, using separate typed sheets as necessary. List Subcontractor, supplier, and manufacturer, with name, address, and telephone number of responsible principal.

SECTION 01 79 00 - DEMONSTRATION AND TRAINING

PART 1 GENERAL

1.1 SUMMARY

- A. Demonstration of products and systems to be commissioned and where indicated in specific specification sections.
- B. Training of Owner personnel in operation and maintenance is required for:
 - 1. All software-operated systems.
 - 2. HVAC systems and equipment.
 - 3. Plumbing equipment.
 - 4. Electrical systems and equipment.
 - 5. Items specified in individual product Sections.
- C. Training of Owner personnel in care, cleaning, maintenance, and repair is required for:
 - 1. Roofing, waterproofing, and other weather-exposed or moisture protection products.
 - 2. Finishes, including flooring, wall finishes, ceiling finishes.
 - 3. Fixtures and fittings.
 - 4. Items specified in individual product Sections.

1.2 RELATED REQUIREMENTS

- A. Section 01 78 00 Closeout Submittals: Operation and maintenance manuals.
- B. Other Specification Sections: Additional requirements for demonstration and training.

1.3 SUBMITTALS

- A. See Section 01 30 00 Administrative Requirements, for submittal procedures; except:
 - 1. Make all submittals specified in this section, and elsewhere where indicated for commissioning purposes, directly to the Commissioning Authority.
 - 2. Submit one copy to the Commissioning Authority, not to be returned.
 - 3. Make commissioning submittals on time schedule specified by Commissioning Authority.
 - 4. Submittals indicated as "Draft" are intended for the use of the Commissioning Authority in preparation of overall Training Plan; submit in editable electronic format, Microsoft Word 2003 preferred.
- B. Draft Training Plans: Owner will designate personnel to be trained; tailor training to needs and skill-level of attendees.
 - 1. Submit to Architect for transmittal to Owner.
 - 2. Submit to Commissioning Authority for review and inclusion in overall training plan.
 - 3. Submit not less than four weeks prior to start of training.
 - 4. Revise and resubmit until acceptable.
 - 5. Provide an overall schedule showing all training sessions.
 - 6. Include at least the following for each training session:
 - a. Identification, date, time, and duration.
 - b. Description of products and/or systems to be covered.
 - c. Name of firm and person conducting training; include qualifications.
 - d. Intended audience, such as job description.
 - e. Objectives of training and suggested methods of ensuring adequate training.
 - f. Methods to be used, such as classroom lecture, live demonstrations, hands-on, etc.
 - g. Media to be used, such a slides, hand-outs, etc.
 - h. Training equipment required, such as projector, projection screen, etc., to be provided by Contractor.
- C. Training Manuals: Provide training manual for each attendee; allow for minimum of two attendees per training session.
 - 1. Include applicable portion of O&M manuals.

- 2. Include copies of all hand-outs, slides, overheads, video presentations, etc., that are not included in O&M manuals.
- 3. Provide one extra copy of each training manual to be included with operation and maintenance data.
- D. Training Reports:
 - 1. Identification of each training session, date, time, and duration.
 - 2. Sign-in sheet showing names and job titles of attendees.
 - 3. List of attendee questions and written answers given, including copies of and references to supporting documentation required for clarification; include answers to questions that could not be answered in original training session.
 - 4. Include Commissioning Authority's formal acceptance of training session.
- E. Video Recordings: Submit digital video recording of each demonstration and training session for Owner's subsequent use.
 - 1. Format: DVD Disc.
 - 2. Label each disc and container with session identification and date.

1.4 QUALITY ASSURANCE

- A. Instructor Qualifications: Familiar with design, operation, maintenance and troubleshooting of the relevant products and systems.
 - 1. Provide as instructors the most qualified trainer of those contractors and/or installers who actually supplied and installed the systems and equipment.
 - 2. Where a single person is not familiar with all aspects, provide specialists with necessary qualifications.

PART 2 PRODUCTS - NOT USED

PART 3 EXECUTION

- 3.1 DEMONSTRATION GENERAL
 - A. Demonstrations conducted during system start-up do not qualify as demonstrations for the purposes of this section, unless approved in advance by Owner.
 - B. Demonstrations conducted during Functional Testing need not be repeated unless Owner personnel training is specified.
 - C. Demonstration may be combined with Owner personnel training if applicable.
 - D. Operating Equipment and Systems: Demonstrate operation in all modes, including start-up, shut-down, seasonal changeover, emergency conditions, and troubleshooting, and maintenance procedures, including scheduled and preventive maintenance.
 - 1. Perform demonstrations not less than two weeks prior to Substantial Completion.
 - 2. For equipment or systems requiring seasonal operation, perform demonstration for other season within six months.
 - E. Non-Operating Products: Demonstrate cleaning, scheduled and preventive maintenance, and repair procedures.
 - 1. Perform demonstrations not less than two weeks prior to Substantial Completion.

3.2 TRAINING - GENERAL

- A. Commissioning Authority will prepare the Training Plan based on draft plans submitted.
- B. Conduct training on-site unless otherwise indicated.
- C. Owner will provide classroom and seating at no cost to Contractor.
- D. Do not start training until Functional Testing is complete, unless otherwise specified or approved by the Commissioning Authority.
- E. Provide training in minimum two hour segments.

- F. The Commissioning Authority is responsible for determining that the training was satisfactorily completed and will provide approval forms.
- G. Training schedule will be subject to availability of Owner's personnel to be trained; re-schedule training sessions as required by Owner; once schedule has been approved by Owner failure to conduct sessions according to schedule will be cause for Owner to charge Contractor for personnel "show-up" time.
- H. Review of Facility Policy on Operation and Maintenance Data: During training discuss:
 - 1. The location of the O&M manuals and procedures for use and preservation; backup copies.
 - 2. Typical contents and organization of all manuals, including explanatory information, system narratives, and product specific information.
 - 3. Typical uses of the O&M manuals.
- I. Product- and System-Specific Training:
 - 1. Review the applicable O&M manuals.
 - 2. For systems, provide an overview of system operation, design parameters and constraints, and operational strategies.
 - 3. Review instructions for proper operation in all modes, including start-up, shut-down, seasonal changeover and emergency procedures, and for maintenance, including preventative maintenance.
 - 4. Provide hands-on training on all operational modes possible and preventive maintenance.
 - 5. Emphasize safe and proper operating requirements; discuss relevant health and safety issues and emergency procedures.
 - 6. Discuss common troubleshooting problems and solutions.
 - 7. Discuss any peculiarities of equipment installation or operation.
 - 8. Discuss warranties and guarantees, including procedures necessary to avoid voiding coverage.
 - 9. Review recommended tools and spare parts inventory suggestions of manufacturers.
 - 10. Review spare parts and tools required to be furnished by Contractor.
 - 11. Review spare parts suppliers and sources and procurement procedures.
- J. Be prepared to answer questions raised by training attendees; if unable to answer during training session, provide written response within three days.

SECTION 01 91 13 - GENERAL COMMISSIONING REQUIREMENTS

PART 1 GENERAL

- 1.1 SUMMARY
 - A. Commissioning is intended to achieve the following specific objectives; this section specifies the Contractor's responsibilities for commissioning:
 - Verify that the work is installed in accordance with the Contract Documents and the manufacturer's recommendations and instructions, and that it receives adequate operational checkout prior to startup: Startup reports and Prefunctional Checklists executed by Contractor are utilized to achieve this.
 - 2. Verify and document that functional performance is in accordance with the Contract Documents: Functional Tests executed by Contractor and witnessed by the Commissioning Authority are utilized to achieve this.
 - 3. Verify that operation and maintenance manuals submitted to Owner are complete: Detailed operation and maintenance (O&M) data submittals by Contractor are utilized to achieve this.
 - 4. Verify that the Owner's operating personnel are adequately trained: Formal training conducted by Contractor is utilized to achieve this.
 - B. Commissioning, including Functional Tests, O&M documentation review, and training, is to occur after startup and initial checkout and be completed before Substantial Completion. with penalty for non-completion as defined in the Conditions of the Contract.
 - C. The Commissioning Authority directs and coordinates all commissioning activities; this section describes some but not all of the Commissioning Authority's responsibilities.
 - D. The Commissioning Authority is employed by Owner.
- 1.2 SCOPE OF COMMISSIONING
 - A. Equipment and systems explicitly identified elsewhere in Contract Documents as requiring commissioning.
- 1.3 RELATED REQUIREMENTS
 - A. Section 01 70 00 Execution and Closeout Requirements: General startup requirements.
 - B. Section 01 78 00 Closeout Submittals: Scope and procedures for operation and maintenance manuals and project record documents.
 - C. Section 01 79 00 Demonstration and Training: Scope and procedures for Owner personnel training.
- 1.4 REFERENCE STANDARDS
 - A. CSI/CSC MF Masterformat; 2014.
 - B. PECI (Samples) Sample Forms for Prefunctional Checklists and Functional Performance Tests; current edition.
- 1.5 SUBMITTALS
 - A. See Section 01 30 00 Administrative Requirements, for submittal procedures; except:
 - Make all submittals specified in this section, and elsewhere where indicated for commissioning purposes, directly to the Commissioning Authority, unless they require review by Architect; in that case, submit to Architect first.
 - 2. Submit one copy to the Commissioning Authority, not to be returned.
 - 3. Make commissioning submittals on time schedule specified by Commissioning Authority.
 - 4. Submittals indicated as "Draft" are intended for the use of the Commissioning Authority in preparation of Prefunctional Checklists or Functional Test requirements; submit in editable electronic format, Microsoft Word 2010 preferred.
 - 5. As soon as possible after submittals made to Architect are approved, submit copy of approved submittal to the Commissioning Authority.

- B. Product Data: If submittals to Architect do not include the following, submit copies as soon as possible:
 - 1. Manufacturer's product data, cut sheets, and shop drawings.
 - 2. Manufacturer's installation instructions.
 - 3. Startup, operating, and troubleshooting procedures.
 - 4. Fan and pump curves.
 - 5. Factory test reports.
 - 6. Warranty information, including details of Owner's responsibilities in regard to keeping warranties in force.
- C. Manufacturers' Instructions: Submit copies of all manufacturer-provided instructions that are shipped with the equipment as soon as the equipment is delivered.
- D. Startup Plans and Reports.
- E. Completed Prefunctional Checklists.

PART 2 PRODUCTS

- 2.1 TEST EQUIPMENT
 - A. Provide all standard testing equipment required to perform startup and initial checkout and required Functional Testing; unless otherwise noted such testing equipment will NOT become the property of Owner.
 - B. Calibration Tolerances: Provide testing equipment of sufficient quality and accuracy to test and/or measure system performance with the tolerances specified. If not otherwise noted, the following minimum requirements apply:
 - 1. Temperature Sensors and Digital Thermometers: Certified calibration within past year to accuracy of 0.5 degree F and resolution of plus/minus 0.1 degree F.
 - 2. Pressure Sensors: Accuracy of plus/minus 2.0 percent of the value range being measured (not full range of meter), calibrated within the last year.
 - 3. Calibration: According to the manufacturer's recommended intervals and when dropped or damaged; affix calibration tags or keep certificates readily available for inspection.
 - C. Equipment-Specific Tools: Where special testing equipment, tools and instruments are specific to a piece of equipment, are only available from the vendor, and are required in order to accomplish startup or Functional Testing, provide such equipment, tools, and instruments as part of the work at no extra cost to Owner; such equipment, tools, and instruments are to become the property of Owner.
 - D. Dataloggers: Independent equipment and software for monitoring flows, currents, status, pressures, etc. of equipment.
 - 1. Dataloggers required to for Functional Tests will be provided by the Commissioning Authority and will not become the property of Owner.

PART 3 EXECUTION

- 3.1 COMMISSIONING PLAN
 - A. Commissioning Authority will prepare the Commissioning Plan.
 - 1. Attend meetings called by the Commissioning Authority for purposes of completing the commissioning plan.
 - 2. Require attendance and participation of relevant subcontractors, installers, suppliers, and manufacturer representatives.
 - B. Contractor is responsible for compliance with the Commissioning Plan.
 - C. Commissioning Plan: The commissioning schedule, procedures, and coordination requirements for all parties in the commissioning process.
 - D. Commissioning Schedule:

- 1. Submit anticipated dates of startup of each item of equipment and system to Commissioning Authority within 60 days after award of Contract.
- 2. Re-submit anticipated startup dates monthly, but not less than 4 weeks prior to startup.
- 3. Prefunctional Checklists and Functional Tests are to be performed in sequence from components, to subsystems, to systems.
- 4. Provide sufficient notice to Commissioning Authority for delivery of relevant Checklists and Functional Test procedures, to avoid delay.

3.2 DOCUMENTATION IDENTIFICATION SYSTEM

- A. Give each submitted form or report a unique identification; use the following scheme.
- B. Type of Document: Use the following prefixes:
 - 1. Startup Plan: SP-.
 - 2. Startup Report: SR-.
 - 3. Prefunctional Checklist: PC-.
 - 4. Functional Test Procedure: FTP-.
 - 5. Functional Test Report: FTR-.
- C. System Type: Use the first 4 digits from CSI/CSC MF (Master Format), that are applicable to the system; for example:
 - 1. 2300: HVAC system as a whole.
 - 2. 2320: HVAC Piping and Pumps.
 - 3. 2330: HVAC Air Distribution.
- D. Component Number: Assign numbers sequentially, using 1, 2, or 3 digits as required to accommodate the number of units in the system.
- E. Test, Revision, or Submittal Number: Number each successive iteration sequentially, starting with 1.
- F. Example: PC-2320-001.2 would be the Prefunctional Checklist for equipment item 1 in the HVAC piping system, probably a pump; this is the second, revised submittal of this checklist.

3.3 STARTUP PLANS AND REPORTS

- A. Startup Plans: For each item of equipment and system for which the manufacturer provides a startup plan, submit the plan not less than 8 weeks prior to startup.
- B. Startup Reports: For each item of equipment and system for which the manufacturer provides a startup checklist (or startup plan or field checkout sheet), document compliance by submitting the completed startup checklist prior to startup, signed and dated by responsible entity.
- C. Submit directly to the Commissioning Authority.

3.4 PREFUNCTIONAL CHECKLISTS

- A. A Prefunctional Checklist is required to be filled out for each item of equipment or other assembly specified to be commissioned.
 - 1. No sampling of identical or near-identical items is allowed.
 - 2. These checklists do not replace manufacturers' recommended startup checklists, regardless of apparent redundancy.
 - 3. Prefunctional Checklist forms will not be complete until after award of the contract; the following types of information will be gathered via the completed Checklist forms:
 - a. Certification by installing contractor that the unit is properly installed, started up, and operating and ready for Functional Testing.
 - b. Confirmation of receipt of each shop drawing and commissioning submittal specified, itemized by unit.
 - c. Manufacturer, model number, and relevant capacity information; list information "as specified," "as submitted," and "as installed."
 - d. Serial number of installed unit.
 - e. List of inspections to be conducted to document proper installation prior to startup and Functional Testing; these will be primarily static inspections and procedures; for

equipment and systems may include normal manufacturer's start-up checklist items and minor testing.

- f. Sensor and actuator calibration information.
- 4. PECI (Samples) found at http://www.peci.org/library/mcpgs.htm indicate anticipated level of detail for Prefunctional Checklists.
- B. Contractor is responsible for filling out Prefunctional Checklists, after completion of installation and before startup; witnessing by the Commissioning Authority is not required unless otherwise specified.
 - 1. Each line item without deficiency is to be witnessed, initialed, and dated by the actual witness; checklists are not complete until all line items are initialed and dated complete without deficiencies.
 - 2. Checklists with incomplete items may be submitted for approval provided the Contractor attests that incomplete items do not preclude the performance of safe and reliable Functional Testing; re-submission of the Checklist is required upon completion of remaining items.
 - 3. Individual Checklists may contain line items that are the responsibility of more than one installer; Contractor shall assign responsibility to appropriate installers or subcontractors, with identification recorded on the form.
 - 4. If any Checklist line item is not relevant, record reasons on the form.
 - 5. Contractor may independently perform startup inspections and/or tests, at his option.
 - 6. Regardless of these reporting requirements, Contractor is responsible for correct startup and operation.
 - 7. Submit completed Checklists to Commissioning Authority within two days of completion.
 - 8. See Section 01 70 00 Execution and Closeout Requirements for additional general startup requirements.
- C. Commissioning Authority is responsible for furnishing the Prefunctional Checklists to Contractor.
 - 1. Initial Drafts: Contractor is responsible for initial draft of Prefunctional Checklist where so indicated in the Contract Documents.
 - Provide all additional information requested by Commissioning Authority to aid in preparation of checklists, such as shop drawing submittals, manufacturers' startup checklists, and O&M data.
 - 3. Commissioning Authority may add any relevant items deemed necessary regardless of whether they are explicitly mentioned in the Contract Documents or not.
 - 4. When asked to review the proposed Checklists, do so in a timely manner.
- D. Commissioning Authority Witnessing: Required for:
 - 1. Each piece of primary equipment, unless sampling of multiple similar units is allowed by the commissioning plan.
 - 2. A sampling of non-primary equipment, as allowed by the commissioning plan.
- E. Deficiencies: Correct deficiencies and re-inspect or re-test, as applicable, at no extra cost to Owner.
 - 1. If difficulty in correction would delay progress, report deficiency to the Commissioning Authority immediately.

3.5 FUNCTIONAL TESTS

- A. A Functional Test is required for each item of equipment, system, or other assembly specified to be commissioned, unless sampling of multiple identical or near-identical units is allowed by the final test procedures.
- B. Contractor is responsible for execution of required Functional Tests, after completion of Prefunctional Checklist and before closeout.
- C. Commissioning Authority is responsible for witnessing and reporting results of Functional Tests, including preparation and completion of forms for that purpose.
- D. Contractor is responsible for correction of deficiencies and re-testing at no extra cost to Owner; if a deficiency is not corrected and re-tested immediately, the Commissioning Authority will document the deficiency and the Contractor's stated intentions regarding correction.

- 1. Deficiencies are any condition in the installation or function of a component, piece of equipment or system that is not in compliance with the Contract Documents or does not perform properly.
- 2. When the deficiency has been corrected, the Contractor completes the form certifying that the item is ready to be re-tested and returns the form to the Commissioning Authority; the Commissioning Authority will reschedule the test and the Contractor shall re-test.
- 3. Identical or Near-Identical Items: If 10 percent, or three, whichever is greater, of identical or near-identical items fail to perform due to material or manufacturing defect, all items will be considered defective; provide a proposal for correction within 2 weeks after notification of defect, including provision for testing sample installations prior to replacement of all items.
- 4. Contractor shall bear the cost of Owner and Commissioning Authority personnel time witnessing re-testing.
- 5. Contractor shall bear the cost of Owner and Commissioning Authority personnel time witnessing re-testing if the test failed due to failure to execute the relevant Prefunctional Checklist correctly; if the test failed for reasons that would not have been identified in the Prefunctional Checklist process, Contractor shall bear the cost of the second and subsequent re-tests.
- E. Functional Test Procedures:
 - 1. Some test procedures are included in the Contract Documents; where Functional Test procedures are not included in the Contract Documents, test procedures will be determined by the Commissioning Authority with input by and coordination with Contractor.
 - 2. Examples of Functional Testing:
 - a. Test the dynamic function and operation of equipment and systems (rather than just components) using manual (direct observation) or monitoring methods under full operation (e.g., the chiller pump is tested interactively with the chiller functions to see if the pump ramps up and down to maintain the differential pressure setpoint).
 - b. Systems are tested under various modes, such as during low cooling or heating loads, high loads, component failures, unoccupied, varying outside air temperatures, fire alarm, power failure, etc.
 - c. Systems are run through all the HVAC control system's sequences of operation and components are verified to be responding as the sequence's state.
 - d. Traditional air or water test and balancing (TAB) is not Functional Testing; spot checking of TAB by demonstration to the Commissioning Authority is Functional Testing.
 - 3. PECI (Samples) found at http://www.peci.org/library/mcpgs.htm indicated anticipated level of detail for Functional Tests.
- F. Deferred Functional Tests: Some tests may need to be performed later, after substantial completion, due to partial occupancy, equipment, seasonal requirements, design or other site conditions; performance of these tests remains the Contractor's responsibility regardless of timing.
- G. Factory Tests: Commissioning Authority and Contractor are responsible for coordinating testing of equipment at the factory by factory personnel, to ensure compliance with commissioning requirements.
- H. Field Tests By Others: Where Functional Tests are indicated as to be performed by others not subject to the Contract Documents, those tests are not subject to these commissioning requirements.

3.6 SENSOR AND ACTUATOR CALIBRATION

- A. Calibrate all field-installed temperature, relative humidity, carbon monoxide, carbon dioxide, and pressure sensors and gages, and all actuators (dampers and valves) on this piece of equipment shall be calibrated. Sensors installed in the unit at the factory with calibration certification provided need not be field calibrated.
- B. Calibrate using the methods described below; alternate methods may be used, if approved by Commissioning Authority and Owner beforehand. See PART 2 for test instrument requirements. Record methods used on the relevant Prefunctional Checklist or other suitable forms, documenting initial, intermediate and final results.

- C. All Sensors:
 - 1. Verify that sensor location is appropriate and away from potential causes of erratic operation.
 - 2. Verify that sensors with shielded cable are grounded only at one end.
 - 3. For sensor pairs that are used to determine a temperature or pressure difference, for temperature make sure they are reading within 0.2 degree F of each other, and for pressure, within tolerance equal to 2 percent of the reading, of each other.
 - 4. Tolerances for critical applications may be tighter.
- D. Sensors Without Transmitters Standard Application:
 - 1. Make a reading with a calibrated test instrument within 6 inches of the site sensor.
 - 2. Verify that the sensor reading, via the permanent thermostat, gage or building automation
 - system, is within the tolerances in the table below of the instrument-measured value. 3. If not, install offset, calibrate or replace sensor.
- E. Sensors With Transmitters Standard Application.
 - 1. Disconnect sensor.
 - 2. Connect a signal generator in place of sensor.
 - 3. Connect ammeter in series between transmitter and building automation system control panel.
 - 4. Using manufacturer's resistance-temperature data, simulate minimum desired temperature.
 - 5. Adjust transmitter potentiometer zero until 4 mA is read by the ammeter.
 - 6. Repeat for the maximum temperature matching 20 mA to the potentiometer span or maximum and verify at the building automation system.
 - 7. Record all values and recalibrate controller as necessary to conform with specified control ramps, reset schedules, proportional relationship, reset relationship and P/I reaction.
 - 8. Reconnect sensor.
 - 9. Make a reading with a calibrated test instrument within 6 inches of the site sensor.
 - 10. Verify that the sensor reading, via the permanent thermostat, gage or building automation system, is within the tolerances in the table below of the instrument-measured value.
 - 11. If not, replace sensor and repeat.
 - 12. For pressure sensors, perform a similar process with a suitable signal generator.
- F. Sensor Tolerances for Standard Applications: Plus/minus the following maximums:
 - 1. Watthour, Voltage, Amperage: 1 percent of design.
 - 2. Pressure, Air, Water, Gas: 3 percent of design.
 - 3. Air Temperatures (Outside Air, Space Air, Duct Air): 0.4 degrees F.
 - 4. Relative Humidity: 4 percent of design.
 - 5. Barometric Pressure: 0.1 inch of Hg.
 - 6. Flow Rate, Air: 10 percent of design.
 - 7. Flow Rate, Water: 4 percent of design.
 - 8. AHU Wet Bulb and Dew Point: 2.0 degrees F.
 - 9. Hot Water Coil and Boiler Water Temperature: 1.5 degrees F.
 - 10. Cooling Coil, Chilled and Condenser Water Temperatures: 0.4 degrees F.
- G. Critical Applications: For some applications more rigorous calibration techniques may be required for selected sensors. Describe any such methods used on an attached sheet.
- H. Valve/Damper Stroke Setup and Check:
 - 1. For all valve/damper actuator positions checked, verify the actual position against the control system readout.
 - 2. Set pump/fan to normal operating mode.
 - 3. Command valve/damper closed; visually verify that valve/damper is closed and adjust output zero signal as required.
 - 4. Command valve/damper to open; verify position is full open and adjust output signal as required.
 - 5. Command valve/damper to a few intermediate positions.
 - 6. If actual valve/damper position does not reasonably correspond, replace actuator or add pilot positioner (for pneumatics).

- I. Isolation Valve or System Valve Leak Check: For valves not associated with coils.
 - 1. With full pressure in the system, command valve closed.
 - 2. Use an ultra-sonic flow meter to detect flow or leakage.

3.7 TEST PROCEDURES - GENERAL

- A. Provide skilled technicians to execute starting of equipment and to execute the Functional Tests. Ensure that they are available and present during the agreed upon schedules and for sufficient duration to complete the necessary tests, adjustments and problem-solving.
- B. Provide all necessary materials and system modifications required to produce the flows, pressures, temperatures, and conditions necessary to execute the test according to the specified conditions. At completion of the test, return all affected equipment and systems to their pre-test condition.
- C. Sampling: Where Functional Testing of fewer than the total number of multiple identical or near-identical items is explicitly permitted, perform sampling as follows:
 - 1. Identical Units: Defined as units with same application and sequence of operation; only minor size or capacity difference.
 - 2. Sampling is not allowed for:
 - a. Major equipment.
 - b. Life-safety-critical equipment.
 - c. Prefunctional Checklist execution.
 - 3. XX = the percent of the group of identical equipment to be included in each sample; defined for specific type of equipment.
 - 4. YY = the percent of the sample that if failed will require another sample to be tested; defined for specific type of equipment.
 - 5. Randomly test at least XX percent of each group of identical equipment, but not less than three units. This constitutes the "first sample."
 - 6. If YY percent of the units in the first sample fail, test another XX percent of the remaining identical units.
 - 7. If YY percent of the units in the second sample fail, test all remaining identical units.
 - 8. If frequent failures occur, resulting in more troubleshooting than testing, the Commissioning Authority may stop the testing and require Contractor to perform and document a checkout of the remaining units prior to continuing testing.
- D. Manual Testing: Use hand-held instruments, immediate control system readouts, or direct observation to verify performance (contrasted to analyzing monitored data taken over time to make the "observation").
- E. Simulating Conditions: Artificially create the necessary condition for the purpose of testing the response of a system; for example apply hot air to a space sensor using a hair dryer to see the response in a VAV box.
- F. Simulating Signals: Disconnect the sensor and use a signal generator to send an amperage, resistance or pressure to the transducer and control system to simulate the sensor value.
- G. Over-Writing Values: Change the sensor value known to the control system in the control system to see the response of the system; for example, change the outside air temperature value from 50 degrees F to 75 degrees F to verify economizer operation.
- H. Indirect Indicators: Remote indicators of a response or condition, such as a reading from a control system screen reporting a damper to be 100 percent closed, are considered indirect indicators.
- I. Monitoring: Record parameters (flow, current, status, pressure, etc.) of equipment operation using dataloggers or the trending capabilities of the relevant control systems; where monitoring of specific points is called for in Functional Test Procedures:
 - 1. All points that are monitored by the relevant control system shall be trended by Contractor; at the Commissioning Authority's request, Contractor shall trend up to 20 percent more points than specified at no extra charge.
 - 2. Other points will be monitored by the Commissioning Authority using dataloggers.

- 3. At the option of the Commissioning Authority, some control system monitoring may be replaced with datalogger monitoring.
- 4. Provide hard copies of monitored data in columnar format with time down left column and at least 5 columns of point values on same page.
- 5. Graphical output is desirable and is required for all output if the system can produce it.
- 6. Monitoring may be used to augment manual testing.

3.8 OPERATION AND MAINTENANCE MANUALS

- A. See Section 01 78 00 Closeout Submittals for additional requirements.
- B. Add design intent documentation furnished by Architect to manuals prior to submission to Owner.
- C. Submit manuals related to items that were commissioned to Commissioning Authority for review; make changes recommended by Commissioning Authority.
- D. Commissioning Authority will add commissioning records to manuals after submission to Owner.

SECTION 02 41 00 - DEMOLITION

PART 1 GENERAL

1.1 SECTION INCLUDES

- A. Selective demolition of built site elements.
- B. Selective demolition of building elements for alteration purposes.

1.2 RELATED REQUIREMENTS

- A. Section 01 10 00 Summary: Limitations on Contractor's use of site and premises.
- B. Section 01 10 00 Summary: Description of items to be salvaged or removed for re-use by Contractor.
- C. Section 01 50 00 Temporary Facilities and Controls: Site fences, security, protective barriers, and waste removal.
- D. Section 01 60 00 Product Requirements: Handling and storage of items removed for salvage and relocation.
- E. Section 01 70 00 Execution and Closeout Requirements: Project conditions; protection of bench marks, survey control points, and existing construction to remain; reinstallation of removed products; temporary bracing and shoring.
- F. Section 01 74 19 Construction Waste Management and Disposal: Limitations on disposal of removed materials; requirements for recycling.
- G. Section 31 10 00 Site Clearing: Vegetation and existing debris removal.
- H. Section 31 23 23 Fill: Fill material for filling holes, pits, and excavations generated as a result of removal operations.
- I. Section 31 23 23 Fill: Filling holes, pits, and excavations generated as a result of removal operations.
- 1.3 REFERENCE STANDARDS
 - A. 29 CFR 1926 U.S. Occupational Safety and Health Standards; current edition.
 - B. NFPA 241 Standard for Safeguarding Construction, Alteration, and Demolition Operations; 2013.
- 1.4 SUBMITTALS
 - A. See Section 01 30 00 Administrative Requirements, for submittal procedures.
 - B. Site Plan: Showing:
 - 1. Vegetation to be protected.
 - 2. Areas for temporary construction and field offices.
 - 3. Areas for temporary and permanent placement of removed materials.
 - C. Demolition Plan: Submit demolition plan as specified by CalOSHA and local authorities.
 - 1. Indicate extent of demolition, removal sequence, bracing and shoring, and location and construction of barricades and fences.
 - 2. Identify demolition firm and submit qualifications.
 - 3. Include a summary of safety procedures.
 - D. Project Record Documents: Accurately record actual locations of capped and active utilities and subsurface construction.

PART 2 PRODUCTS

2.1 MATERIALS

A. Fill Material: As specified in Section 31 23 23 - Fill.

PART 3 EXECUTION

- 3.1 SCOPE
 - A. Remove paving and curbs as required to accomplish new work.
 - B. Remove other items as indicated and as required to accomplish new work.
 - C. Remove other items indicated, for salvage and relocation.
- 3.2 GENERAL PROCEDURES AND PROJECT CONDITIONS
 - A. Comply with other requirements specified in Section 01 70 00.
 - B. Comply with applicable codes and regulations for demolition operations and safety of adjacent structures and the public.
 - 1. Obtain required permits.
 - 2. Comply with applicable requirements of NFPA 241.
 - 3. Use of explosives is not permitted.
 - 4. Take precautions to prevent catastrophic or uncontrolled collapse of structures to be removed; do not allow worker or public access within range of potential collapse of unstable structures.
 - 5. Provide, erect, and maintain temporary barriers and security devices.
 - 6. Use physical barriers to prevent access to areas that could be hazardous to workers or the public.
 - 7. Conduct operations to minimize effects on and interference with adjacent structures and occupants.
 - 8. Do not close or obstruct roadways or sidewalks without permit.
 - Conduct operations to minimize obstruction of public and private entrances and exits; do not
 obstruct required exits at any time; protect persons using entrances and exits from removal
 operations.
 - 10. Obtain written permission from owners of adjacent properties when demolition equipment will traverse, infringe upon or limit access to their property.
 - C. Do not begin removal until receipt of notification to proceed from Owner.
 - D. Do not begin removal until built elements to be salvaged or relocated have been removed.
 - E. Do not begin removal until vegetation to be relocated has been removed and specified measures have been taken to protect vegetation to remain.
 - F. Protect existing structures and other elements that are not to be removed.
 - 1. Provide bracing and shoring.
 - 2. Prevent movement or settlement of adjacent structures.
 - 3. Stop work immediately if adjacent structures appear to be in danger.
 - G. Minimize production of dust due to demolition operations; do not use water if that will result in ice, flooding, sedimentation of public waterways or storm sewers, or other pollution.
 - H. If hazardous materials are discovered during removal operations, stop work and notify Architect and Owner; hazardous materials include regulated asbestos containing materials, lead, PCB's, and mercury.
 - I. Partial Removal of Paving and Curbs: Neatly saw cut at right angle to surface.

3.3 EXISTING UTILITIES

- A. Coordinate work with utility companies; notify before starting work and comply with their requirements; obtain required permits.
- B. Protect existing utilities to remain from damage.
- C. Do not disrupt public utilities without permit from authority having jurisdiction.
- D. Do not close, shut off, or disrupt existing life safety systems that are in use without at least 7 days prior written notification to Owner.

- E. Do not close, shut off, or disrupt existing utility branches or take-offs that are in use without at least 3 days prior written notification to Owner.
- F. Locate and mark utilities to remain; mark using highly visible tags or flags, with identification of utility type; protect from damage due to subsequent construction, using substantial barricades if necessary.
- G. Remove exposed piping, valves, meters, equipment, supports, and foundations of disconnected and abandoned utilities.
- H. Prepare building demolition areas by disconnecting and capping utilities outside the demolition zone; identify and mark utilities to be subsequently reconnected, in same manner as other utilities to remain.

3.4 SELECTIVE DEMOLITION FOR ALTERATIONS

- A. Drawings showing existing construction and utilities are based on casual field observation and existing record documents only.
 - 1. Verify that construction and utility arrangements are as indicated.
 - 2. Report discrepancies to Architect before disturbing existing installation.
 - 3. Beginning of demolition work constitutes acceptance of existing conditions that would be apparent upon examination prior to starting demolition.
- B. Separate areas in which demolition is being conducted from other areas that are still occupied.
 - 1. Provide, erect, and maintain temporary dustproof partitions of construction specified in Section 01 50 00 in locations indicated on drawings.
- C. Maintain weatherproof exterior building enclosure except for interruptions required for replacement or modifications; take care to prevent water and humidity damage.
- D. Remove existing work as indicated and as required to accomplish new work.
 - 1. Remove rotted wood, corroded metals, and deteriorated masonry and concrete; replace with new construction specified.
 - 2. Remove items indicated on drawings.
- E. Services (Including but not limited to HVAC, Plumbing, and Electrical): Remove existing systems and equipment as indicated.
 - 1. Maintain existing active systems that are to remain in operation; maintain access to equipment and operational components.
 - 2. Where existing active systems serve occupied facilities but are to be replaced with new services, maintain existing systems in service until new systems are complete and ready for service.
 - 3. See Section 01 10 00 for other limitations on outages and required notifications.
 - 4. Verify that abandoned services serve only abandoned facilities before removal.
 - 5. Remove abandoned pipe, ducts, conduits, and equipment; remove back to source of supply where possible, otherwise cap stub and tag with identification.
- F. Protect existing work to remain.
 - 1. Prevent movement of structure; provide shoring and bracing if necessary.
 - 2. Perform cutting to accomplish removals neatly and as specified for cutting new work.
 - 3. Repair adjacent construction and finishes damaged during removal work.
 - 4. Patch as specified for patching new work.

3.5 DEBRIS AND WASTE REMOVAL

- A. Remove debris, junk, and trash from site.
- Remove from site all materials not to be reused on site; comply with requirements of Section 01 74 19 - Construction Waste Management and Disposal.
- C. Leave site in clean condition, ready for subsequent work.
- D. Clean up spillage and wind-blown debris from public and private lands.
SECTION 05 50 00 - METAL FABRICATIONS

PART 1 GENERAL

- 1.1 SECTION INCLUDES
 - A. Shop fabricated steel items.
- 1.2 RELATED REQUIREMENTS
 - A. Section 32 30 00 Site Furnishings: Steel pipe bollards to match other site furnishings.
- 1.3 REFERENCE STANDARDS
 - A. ASTM A36/A36M Standard Specification for Carbon Structural Steel; 2014.
 - B. ASTM A53/A53M Standard Specification for Pipe, Steel, Black and Hot-Dipped, Zinc-Coated, Welded and Seamless; 2012.
 - C. ASTM A123/A123M Standard Specification for Zinc (Hot-Dip Galvanized) Coatings on Iron and Steel Products; 2015.
 - D. ASTM A153/A153M Standard Specification for Zinc Coating (Hot-Dip) on Iron and Steel Hardware; 2009.
 - E. ASTM A283/A283M Standard Specification for Low and Intermediate Tensile Strength Carbon Steel Plates; 2013.
 - F. ASTM A501/A501M Standard Specification for Hot-Formed Welded and Seamless Carbon Steel Structural Tubing; 2014.
 - G. ASTM A653/A653M Standard Specification for Steel Sheet, Zinc-Coated (Galvanized) or Zinc-Iron Alloy-Coated (Galvannealed) by the Hot-Dip Process; 2015.
 - H. ASTM A1011/A1011M Standard Specification for Steel, Sheet and Strip, Hot-Rolled, Carbon, Structural, High-Strength Low-Alloy, High-Strength Low-Alloy with Improved Formability, and Ultra-High Strength; 2014.
 - I. ASTM F3125/F3125M Standard Specification for High Strength Structural Bolts, Steel and Alloy Steel, Heat Treated, 120 ksi (830 MPa) and 150 ksi (1040 MPa) Minimum Tensile Strength, Inch and Metric Dimensions; 2015a.
 - J. AWS A2.4 Standard Symbols for Welding, Brazing, and Nondestructive Examination; 2012.
 - K. AWS D1.1/D1.1M Structural Welding Code Steel; 2015.
 - L. SSPC-Paint 20 Zinc-Rich Primers (Type I, "Inorganic," and Type II, "Organic"); 2002 (Ed. 2004).
- 1.4 SUBMITTALS
 - A. See Section 01 30 00 Administrative Requirements, for submittal procedures.
 - B. Shop Drawings: Indicate profiles, sizes, connection attachments, reinforcing, anchorage, size and type of fasteners, and accessories. Include erection drawings, elevations, and details where applicable.
 - 1. Indicate welded connections using standard AWS A2.4 welding symbols. Indicate net weld lengths.
 - C. Welders' Certificates: Submit certification for welders employed on the project, verifying AWS qualification within the previous 12 months.

PART 2 PRODUCTS

- 2.1 MATERIALS STEEL
 - A. Steel Sections: ASTM A36/A36M.
 - B. Steel Tubing: ASTM A501/A501M hot-formed structural tubing.
 - C. Plates: ASTM A283/A283M.

- D. Pipe: ASTM A53/A53M, Grade B Schedule 40, hot-dip galvanized finish.
- E. Slotted Channel Framing: ASTM A653/A653M, Grade 33.
- F. Slotted Channel Fittings: ASTM A1011/A1011M.
- G. Bolts, Nuts, and Washers: ASTM F3125/F3125M, Type 1, galvanized to ASTM A153/A153M where connecting galvanized components.
- H. Welding Materials: AWS D1.1/D1.1M; type required for materials being welded.
- I. Touch-Up Primer for Galvanized Surfaces: SSPC-Paint 20, Type I Inorganic, complying with VOC limitations of authorities having jurisdiction.
- 2.2 FABRICATION
 - A. Fit and shop assemble items in largest practical sections, for delivery to site.
 - B. Fabricate items with joints tightly fitted and secured.
 - C. Grind exposed joints flush and smooth with adjacent finish surface. Make exposed joints butt tight, flush, and hairline. Ease exposed edges to small uniform radius.
 - D. Supply components required for anchorage of fabrications. Fabricate anchors and related components of same material and finish as fabrication, except where specifically noted otherwise.
- 2.3 FABRICATED ITEMS
 - A. Steel framing and supports for applications where framing and supports are not specified in other Sections.
- 2.4 FINISHES STEEL
 - A. Galvanizing of Structural Steel Members: Galvanize after fabrication to ASTM A123/A123M requirements.
 - B. Galvanizing of Non-structural Items: Galvanize after fabrication to ASTM A123/A123M requirements.
- 2.5 FABRICATION TOLERANCES
 - A. Squareness: 1/8 inch maximum difference in diagonal measurements.
 - B. Maximum Offset Between Faces: 1/16 inch.
 - C. Maximum Misalignment of Adjacent Members: 1/16 inch.
 - D. Maximum Bow: 1/8 inch in 48 inches.
 - E. Maximum Deviation From Plane: 1/16 inch in 48 inches.

PART 3 EXECUTION

- 3.1 EXAMINATION
 - A. Verify that field conditions are acceptable and are ready to receive work.
- 3.2 PREPARATION
 - A. Supply setting templates to the appropriate entities for steel items required to be cast into concrete or embedded in masonry.
- 3.3 INSTALLATION
 - A. Install items plumb and level, accurately fitted, free from distortion or defects.
 - B. Provide for erection loads, and for sufficient temporary bracing to maintain true alignment until completion of erection and installation of permanent attachments.
 - C. Field weld components as indicated on drawings.
 - D. Perform field welding in accordance with AWS D1.1/D1.1M.

E. Obtain approval prior to site cutting or making adjustments not scheduled.

3.4 TOLERANCES

- A. Maximum Variation From Plumb: 1/4 inch per story, non-cumulative.
- B. Maximum Offset From True Alignment: 1/4 inch.
- C. Maximum Out-of-Position: 1/4 inch.

END OF SECTION

SECTION 07 92 00 - JOINT SEALANTS

PART 1 GENERAL

- 1.1 SECTION INCLUDES
 - A. Nonsag gunnable joint sealants.
 - B. Self-leveling pourable joint sealants.
 - C. Joint backings and accessories.
- 1.2 RELATED REQUIREMENTS
 - A. Section 01 61 16 Volatile Organic Compound (VOC) Content Restrictions: Additional requirements for sealants and primers.
- 1.3 REFERENCE STANDARDS
 - A. ASTM C661 Standard Test Method for Indentation Hardness of Elastomeric-Type Sealants by Means of a Durometer; 2006 (Reapproved 2011).
 - B. ASTM C794 Standard Test Method for Adhesion-In-Peel of Elastomeric Joint Sealants; 2015.
 - C. ASTM C919 Standard Practice for Use of Sealants in Acoustical Applications; 2012.
 - D. ASTM C920 Standard Specification for Elastomeric Joint Sealants; 2014.
 - E. ASTM C1087 Standard Test Method for Determining Compatibility of Liquid-Applied Sealants with Accessories Used in Structural Glazing Systems; 2000 (Reapproved 2011).
 - F. ASTM C1193 Standard Guide for Use of Joint Sealants; 2013.
 - G. ASTM C1248 Standard Test Method for Staining of Porous Substrate by Joint Sealants; 2008 (Reapproved 2012).
 - H. ASTM C1521 Standard Practice for Evaluating Adhesion of Installed Weatherproofing Sealant Joints; 2013.
 - I. ASTM D2240 Standard Test Method for Rubber Property--Durometer Hardness; 2005 (Reapproved 2010).
- 1.4 SUBMITTALS
 - A. See Section 01 30 00 Administrative Requirements, for submittal procedures.
 - B. Product Data for Sealants: Submit manufacturer's technical data sheets for each product to be used, that includes the following.
 - 1. Physical characteristics, including movement capability, VOC content, hardness, cure time, and color availability.
 - 2. List of backing materials approved for use with the specific product.
 - 3. Substrates that product is known to satisfactorily adhere to and with which it is compatible.
 - 4. Substrates the product should not be used on.
 - 5. Substrates for which use of primer is required.
 - 6. Substrates for which laboratory adhesion and/or compatibility testing is required.
 - 7. Installation instructions, including precautions, limitations, and recommended backing materials and tools.
 - 8. Sample product warranty.
 - 9. Certification by manufacturer indicating that product complies with specification requirements.
 - C. Product Data for Accessory Products: Submit manufacturer's technical data sheet for each product to be used, including physical characteristics, installation instructions, and recommended tools.
 - D. Color Cards for Selection: Where sealant color is not specified, submit manufacturer's color cards showing standard colors available for selection.

- E. Samples for Verification: Where custom sealant color is specified, obtain directions from Architect and submit at least two physical samples for verification of color of each required sealant.
- F. Preconstruction Laboratory Test Reports: Submit at least four weeks prior to start of installation.
- G. Preinstallation Field Adhesion Test Plan: Submit at least two weeks prior to start of installation.
- H. Field Quality Control Plan: Submit at least two weeks prior to start of installation.
- I. Preinstallation Field Adhesion Test Reports: Submit filled out Preinstallation Field Adhesion Test Reports log within 10 days after completion of tests; include bagged test samples and photographic records.
- J. Installation Log: Submit filled out log for each length or instance of sealant installed.
- K. Field Quality Control Log: Submit filled out log for each length or instance of sealant installed, within 10 days after completion of inspections/tests; include bagged test samples and photographic records, if any.

1.5 QUALITY ASSURANCE

- A. Manufacturer Qualifications: Company specializing in manufacturing the products specified in this section with minimum three years documented experience.
- B. Installer Qualifications: Company specializing in performing the work of this section and with at least three years of documented experience.
- C. Testing Agency Qualifications: Independent firm specializing in performing testing and inspections of the type specified in this section.
- D. Preconstruction Laboratory Testing: Arrange for sealant manufacturer(s) to test each combination of sealant, substrate, backing, and accessories.
 - 1. Adhesion Testing: In accordance with ASTM C794.
 - 2. Compatibility Testing: In accordance with ASTM C1087.
 - 3. Allow sufficient time for testing to avoid delaying the work.
 - 4. Deliver to manufacturer sufficient samples for testing.
 - 5. Report manufacturer's recommended corrective measures, if any, including primers or techniques not indicated in product data submittals.
 - 6. Testing is not required if sealant manufacturer provides data showing previous testing, not older than 24 months, that shows satisfactory adhesion, lack of staining, and compatibility.
- E. Preinstallation Field Adhesion Test Plan: Include destructive field adhesion testing of one sample of each combination of sealant type and substrate, except interior acrylic latex sealants, and include the following for each tested sample.
 - 1. Identification of testing agency.
 - 2. Preinstallation Field Adhesion Test Log Form: Include the following data fields, with known information filled out.
 - a. Substrate; if more than one type of substrate is involved in a single joint, provide two entries on form, for testing each sealant substrate side separately.
 - b. Test date.
 - c. Location on project.
 - d. Sealant used.
 - e. Stated movement capability of sealant.
 - f. Test method used.
 - g. Date of installation of field sample to be tested.
 - h. Date of test.
 - i. Copy of test method documents.
 - j. Age of sealant upon date of testing.
 - k. Test results, modeled after the sample form in the test method document.
 - I. Indicate use of photographic record of test.
- F. Field Quality Control Plan:
 - 1. Visual inspection of entire length of sealant joints.

- 2. Non-destructive field adhesion testing of sealant joints, except interior acrylic latex sealants.
 - a. For each different sealant and substrate combination, allow for one test every 12 inches in the first 10 linear feet of joint and one test every 24 inches thereafter.
 - b. If any failures occur in the first 10 linear feet, continue testing at 12 inch intervals at no extra cost to Owner.
- 3. Field testing agency's qualifications.
- 4. Field Quality Control Log Form: Show same data fields as on Preinstallation Field Adhesion Test Log, with known information filled out and lines for multiple tests per sealant/substrate combinations; include visual inspection and specified field testing; allow for possibility that more tests than minimum specified may be necessary.
- G. Field Adhesion Test Procedures:
 - 1. Allow sealants to fully cure as recommended by manufacturer before testing.
 - 2. Have a copy of the test method document available during tests.
 - 3. Record the type of failure that occurred, other information required by test method, and the information required on the Field Quality Control Log.
 - 4. When performing destructive tests, also inspect the opened joint for proper installation characteristics recommended by manufacturer, and report any deficiencies.
 - 5. Deliver the samples removed during destructive tests in separate sealed plastic bags, identified with project, location, test date, and test results, to Owner.
 - 6. If any combination of sealant type and substrate does not show evidence of minimum adhesion or shows cohesion failure before minimum adhesion, report results to Architect.
- H. Non-Destructive Field Adhesion Test: Test for adhesion in accordance with ASTM C1521, using Nondestructive Spot Method.
 - 1. Record results on Field Quality Control Log.
 - 2. Repair failed portions of joints.
- I. Destructive Field Adhesion Test: Test for adhesion in accordance with ASTM C1521, using Destructive Tail Procedure.
 - 1. Sample: At least 18 inch long.
 - 2. Minimum Elongation Without Adhesive Failure: Consider the tail at rest, not under any elongation stress; multiply the stated movement capability of the sealant in percent by two; then multiply 1 inch by that percentage; if adhesion failure occurs before the "1 inch mark" is that distance from the substrate, the test has failed.
 - 3. If either adhesive or cohesive failure occurs prior to minimum elongation, take necessary measures to correct conditions and re-test; record each modification to products or installation procedures.
 - 4. Record results on Field Quality Control Log.
 - 5. Repair failed portions of joints.
- J. Field Adhesion Tests of Joints: Test for adhesion using most appropriate method in accordance with ASTM C1521, or other applicable method as recommended by manufacturer.

1.6 WARRANTY

- A. See Section 01 78 00 Closeout Submittals, for additional warranty requirements.
- B. Correct defective work within a five year period after Date of Substantial Completion.
- C. Warranty: Include coverage for installed sealants and accessories that fail to achieve watertight seal, exhibit loss of adhesion or cohesion, or do not cure.

PART 2 PRODUCTS

- 2.1 JOINT SEALANT APPLICATIONS
 - A. Scope:
 - 1. Exterior Joints: Seal open joints, whether or not the joint is indicated on the drawings, unless specifically indicated not to be sealed. Exterior joints to be sealed include, but are not limited to, the following items.

- a. Wall expansion and control joints.
- b. Joints between door, window, and other frames and adjacent construction.
- c. Joints between different exposed materials.
- d. Openings below ledge angles in masonry.
- e. Other joints indicated below.
- 2. Interior Joints: Do not seal interior joints unless specifically indicated to be sealed. Interior joints to be sealed include, but are not limited to, the following items.
 - a. Joints between door, window, and other frames and adjacent construction.
 - b. Gaps at electrical outlets, wiring devices, piping, and other openings; between wall/ceiling and other construction, and junctures of ceilings to walls.
 - c. Other joints indicated below.
- 3. Do not seal the following types of joints.
 - a. Intentional weepholes in masonry.
 - b. Joints indicated to be treated with manufactured expansion joint cover or some other type of sealing device.
 - c. Joints where sealant is specified to be provided by manufacturer of product to be sealed.
 - d. Joints where installation of sealant is specified in another section.
 - e. Joints between suspended panel ceilings/grid and walls.
- B. Exterior Joints: Use nonsag non-staining silicone sealant, unless otherwise indicated.
 - 1. Control and Expansion Joints in Concrete Paving: Self-leveling polyurethane "traffic-grade" sealant.
 - 2. Wiring Slots in Concrete Paving: Self-leveling epoxy sealant.
 - 3. Cooling Tower and Fountain Basins: Non-sag polyurethane sealant for continuous immersion.
- C. Interior Joints: Use nonsag polyurethane sealant, unless otherwise indicated.
 - 1. Narrow Control Joints in Interior Concrete Slabs: Self-leveling epoxy sealant.
 - 2. Other Floor Joints: Self-leveling polyurethane "traffic-grade" sealant.
- 2.2 JOINT SEALANTS GENERAL
 - A. Sealants and Primers: Provide products with levels of volatile organic compound (VOC) content as indicated in Section 01 61 16.
 - B. Colors: As selected by Architect from manufacturer's full range.
- 2.3 NONSAG JOINT SEALANTS
 - A. Non-Staining Silicone Sealant: ASTM C920, Grade NS, Uses M and A; not expected to withstand continuous water immersion or traffic.
 - 1. Movement Capability: Plus 100 percent, minus 50 percent, minimum.
 - 2. Non-Staining To Porous Stone: Non-staining to light-colored natural stone when tested in accordance with ASTM C1248.
 - 3. Dirt Pick-Up: Reduced dirt pick-up compared to other silicone sealants.
 - 4. Hardness Range: 12 to 18, Shore A, when tested in accordance with ASTM C661.
 - 5. Color: Match adjacent finished surfaces.
 - 6. Cure Type: Single-component, neutral moisture curing.
 - 7. Manufacturers:
 - a. Dow Corning Corporation; 790 Silicone Building Sealant: www.dowcorning.com/construction/sle.
 - b. Pecora Corporation; 890 FTS: www.pecora.com.
 - c. Sika Corporation; Sikasil WS-290 FPS: www.usa-sika.com.
 - d. Substitutions: See Section 01 60 00 Product Requirements.
 - B. Polyurethane Sealant: ASTM C920, Grade NS, Uses M and A; single component; not expected to withstand continuous water immersion or traffic.
 - 1. Movement Capability: Plus and minus 25 percent, minimum.
 - 2. Hardness Range: 20 to 35, Shore A, when tested in accordance with ASTM C661.
 - 3. Color: Match adjacent finished surfaces.

- 4. Manufacturers:
 - a. Sika Corporation; Sikaflex-1a: www.usa-sika.com.
 - b. Pecora Corporation; DynaTrol I-XL: www.pecora.com.
 - c. Substitutions: See Section 01 60 00 Product Requirements.

2.4 SELF-LEVELING SEALANTS

- A. Self-Leveling Polyurethane Sealant: ASTM C920, Grade P, Use T; single component; explicitly approved by manufacturer for traffic exposure; not expected to withstand continuous water immersion .
 - 1. Movement Capability: Plus and minus 25 percent, minimum.
 - 2. Manufacturers:
 - a. Sika Corporation; Sikaflex-1c SL: www.usa-sika.com.
 - b. W. R. MEADOWS, Inc; POURTHANE SL: www.wrmeadows.com.
 - c. Substitutions: See Section 01 60 00 Product Requirements.
- B. Self-Leveling Polyurethane Sealant for Continuous Water Immersion: Polyurethane; ASTM C920, Grade P, Uses M and A; single or multi-component; explicitly approved by manufacturer for traffic exposure and continuous water immersion.
 - 1. Movement Capability: Plus and minus 25 percent, minimum.
 - 2. Hardness Range: 30 to 45, Shore A, when tested in accordance with ASTM C661.
 - 3. Color: To be selected by Architect from manufacturer's standard range.
 - 4. Manufacturers:
 - a. Sika Corporation; Sikaflex-1c SL: www.usa-sika.com.
 - b. W. R. MEADOWS, Inc; POURTHANE SL: www.wrmeadows.com.
 - c. Substitutions: See Section 01 60 00 Product Requirements.
- C. Semi-Rigid Self-Leveling Epoxy Joint Filler: Epoxy or epoxy/polyurethane copolymer; intended for filling cracks and control joints not subject to significant movement; rigid enough to support concrete edges under traffic.
 - 1. Composition: Multi-component, 100 percent solids by weight.
 - 2. Hardness: Minimum of 85 (Shore A) or 35 (Shore D), when tested in accordance with ASTM D2240 after 7 days.
 - 3. Joint Width, Minimum: 1/8 inch.
 - 4. Joint Depth: Provide product suitable for joints from 1/8 inch to 2 inches in depth including space for backer rod.
 - 5. Manufacturers:
 - a. Dayton Superior Corporation; Pro-Poxy P606: www.daytonsuperior.com.
 - b. Nox-Crete; DynaFlex 502: www.nox-crete.com/#sle
 - c. W.R. Meadows, Inc; Rezi-Weld Flex: www.wrmeadows.com/sle.
 - d. Substitutions: See Section 01 60 00 Product Requirements.

2.5 ACCESSORIES

- A. Backer Rod: Cylindrical cellular foam rod with surface that sealant will not adhere to, compatible with specific sealant used, and recommended by backing and sealant manufacturers for specific application.
- B. Backing Tape: Self-adhesive polyethylene tape with surface that sealant will not adhere to and recommended by tape and sealant manufacturers for specific application.
- C. Masking Tape: Self-adhesive, nonabsorbent, non-staining, removable without adhesive residue, and compatible with surfaces adjacent to joints and sealants.
- D. Joint Cleaner: Non-corrosive and non-staining type, type recommended by sealant manufacturer; compatible with joint forming materials.
- E. Primers: Type recommended by sealant manufacturer to suit application; non-staining.

PART 3 EXECUTION

3.1 EXAMINATION

- A. Verify that joints are ready to receive work.
- B. Verify that backing materials are compatible with sealants.
- C. Verify that backer rods are of the correct size.
- D. Preinstallation Adhesion Testing: Install a sample for each test location indicated in the test plan.
 - 1. Test each sample as specified in PART 1 under QUALITY ASSURANCE article.
 - 2. Notify Architect of date and time that tests will be performed, at least 7 days in advance.
 - 3. Record each test on Preinstallation Adhesion Test Log as indicated.
 - If any sample fails, review products and installation procedures, consult manufacturer, or take whatever other measures are necessary to ensure adhesion; re-test in a different location; if unable to obtain satisfactory adhesion, report to Architect.
 - 5. After completion of tests, remove remaining sample material and prepare joint for new sealant installation.

3.2 PREPARATION

- A. Remove loose materials and foreign matter that could impair adhesion of sealant.
- B. Clean joints, and prime as necessary, in accordance with manufacturer's instructions.
- C. Perform preparation in accordance with manufacturer's instructions and ASTM C1193.
- D. Mask elements and surfaces adjacent to joints from damage and disfigurement due to sealant work; be aware that sealant drips and smears may not be completely removable.
- E. Concrete Floor Joints That Will Be Exposed in Completed Work: Test joint filler in inconspicuous area to verify that it does not stain or discolor slab.

3.3 INSTALLATION

- A. Perform work in accordance with sealant manufacturer's requirements for preparation of surfaces and material installation instructions.
- B. Perform installation in accordance with ASTM C1193.
- C. Perform acoustical sealant application work in accordance with ASTM C919.
- D. Measure joint dimensions and size joint backers to achieve width-to-depth ratio, neck dimension, and surface bond area as recommended by manufacturer, except where specific dimensions are indicated.
- E. Install bond breaker backing tape where backer rod cannot be used.
- F. Install sealant free of air pockets, foreign embedded matter, ridges, and sags, and without getting sealant on adjacent surfaces.
- G. Do not install sealant when ambient temperature is outside manufacturer's recommended temperature range, or will be outside that range during the entire curing period, unless manufacturer's approval is obtained and instructions are followed.
- H. Nonsag Sealants: Tool surface concave, unless otherwise indicated; remove masking tape immediately after tooling sealant surface.
- I. Concrete Floor Joint Filler: After full cure, shave joint filler flush with top of concrete slab.
- 3.4 FIELD QUALITY CONTROL
 - A. Perform field quality control inspection/testing as specified in PART 1 under QUALITY ASSURANCE article.
 - B. Non-Destructive Adhesion Testing: If there are any failures in first 100 linear feet, notify Architect immediately.

C. Remove and replace failed portions of sealants using same materials and procedures as indicated for original installation.

3.5 POST-OCCUPANCY

A. Post-Occupancy Inspection: Perform visual inspection of entire length of project sealant joints at a time that joints have opened to their greatest width; i.e. at the low temperature in the thermal cycle. Report failures immediately and repair.

END OF SECTION

SECTION 09 91 13 - EXTERIOR PAINTING

PART 1 GENERAL

- 1.1 SECTION INCLUDES
 - A. Surface preparation.
 - B. Field application of paints.
 - C. Scope: Finish exterior surfaces exposed to view, unless fully factory-finished and unless otherwise indicated, including the following:
 - 1. Mechanical and Electrical:
 - a. On the roof and outdoors, paint equipment that is exposed to weather or to view, unless factory finished.
 - D. Do Not Paint or Finish the Following Items:
 - 1. Existing painted surfaces, unless affected by new Work or indicated otherwise.
 - 2. Items factory-finished unless otherwise indicated; materials and products having factory-applied primers are not considered factory finished.
 - 3. Items indicated to receive other finishes.
 - 4. Items indicated to remain unfinished.
 - 5. Fire rating labels, equipment serial number and capacity labels, and operating parts of equipment.
 - 6. Non-metallic roofing and flashing.
 - 7. Stainless steel, anodized aluminum, bronze, terne coated stainless steel, zinc, and lead.
 - 8. Marble, granite, slate, and other natural stones.
 - 9. Floors, unless specifically indicated.
 - 10. Ceramic and other types of tiles.
 - 11. Brick, glass unit masonry, architectural concrete, and cast stone.
 - 12. Glass.
 - 13. Concrete, unless previously painted or otherwise indicated to be painted.
 - 14. Concrete masonry units in utility, mechanical, and electrical spaces, unless previously painted or otherwise indicated to be painted.
 - 15. Concealed pipes, ducts, and conduits.

1.2 RELATED REQUIREMENTS

- A. Section 01 61 16 Volatile Organic Compound (VOC) Content Restrictions.
- B. Section 09 91 23 Interior Painting.
- C. Section 22 05 53 Identification for Plumbing Piping and Equipment: Painted identification.
- D. Section 22 05 53 Identification for Plumbing Piping and Equipment: Color coding scheme for items to be painted under this section.
- E. Section 23 05 53 Identification for HVAC Piping and Equipment: Painted identification.
- F. Section 23 05 53 Identification for HVAC Piping and Equipment: Color coding scheme for items to be painted under this section.
- G. Section 26 05 53 Identification for Electrical Systems: Painted identification.
- H. Section 26 05 53 Identification for Electrical Systems: Color coding scheme for items to be painted under this section.
- I. Section 32 17 23.13 Painted Pavement Markings: Painted pavement markings.

1.3 DEFINITIONS

- A. Conform to ASTM D16 for interpretation of terms used in this section.
- 1.4 REFERENCE STANDARDS
 - A. ASTM D16 Standard Terminology for Paint, Related Coatings, Materials, and Applications; 2014.

- B. MPI (APSM) Master Painters Institute Architectural Painting Specification Manual; Current Edition, www.paintinfo.com.
- C. SSPC-SP 1 Solvent Cleaning; 2015.
- D. SSPC-SP 16 Brush-Off Blast Cleaning of Coated and Uncoated Galvanized Steel, Stainless Steels, and Non-Ferrous Metals; 2010.
- E. SSPC-SP 6 Commercial Blast Cleaning; 2007.
- F. SSPC-SP 13 Surface Preparation of Concrete; (Reaffirmed 2015); 2003.
- 1.5 SUBMITTALS
 - A. See Section 01 30 00 Administrative Requirements, for submittal procedures.
 - B. Product Data: Provide complete list of products to be used, with the following information for each:
 - 1. Manufacturer's name, product name and/or catalog number, and general product category (e.g. "alkyd enamel").
 - 2. MPI product number (e.g. MPI #47).
 - 3. Cross-reference to specified paint system(s) product is to be used in; include description of each system.
 - 4. Manufacturer's installation instructions.
 - 5. If proposal of substitutions is allowed under submittal procedures, explanation of substitutions proposed.
 - C. Samples: Submit three paper "draw down" samples, 8-1/2 by 11 inches in size, illustrating range of colors available for each finishing product specified.
 - 1. Where sheen is specified, submit samples in only that sheen.
 - 2. Where sheen is not specified, discuss sheen options with Architect before preparing samples, to eliminate sheens definitely not required.
 - D. Certification: By manufacturer that paints and finishes comply with VOC limits specified.
 - E. Manufacturer's Instructions: Indicate special surface preparation procedures.
 - F. Maintenance Data: Submit data including finish schedule showing where each product/color/finish was used, product technical data sheets, material safety data sheets (MSDS), care and cleaning instructions, touch-up procedures, repair of painted and finished surfaces, and color samples of each color and finish used.
 - G. Maintenance Materials: Furnish the following for Owner's use in maintenance of project.
 - 1. See Section 01 60 00 Product Requirements, for additional provisions.
 - 2. Extra Paint and Finish Materials: 1 gallon of each color; from the same product run, store where directed.
 - 3. Label each container with color in addition to the manufacturer's label.

1.6 QUALITY ASSURANCE

- A. Manufacturer Qualifications: Company specializing in manufacturing the products specified, with minimum three years documented experience.
- B. Applicator Qualifications: Company specializing in performing the type of work specified with minimum three years documented experience.

1.7 DELIVERY, STORAGE, AND HANDLING

- A. Deliver products to site in sealed and labeled containers; inspect to verify acceptability.
- B. Container Label: Include manufacturer's name, type of paint, brand name, lot number, brand code, coverage, surface preparation, drying time, cleanup requirements, color designation, and instructions for mixing and reducing.
- C. Paint Materials: Store at minimum ambient temperature of 45 degrees F and a maximum of 90 degrees F, in ventilated area, and as required by manufacturer's instructions.

1.8 FIELD CONDITIONS

- A. Do not apply materials when surface and ambient temperatures are outside the temperature ranges required by the paint product manufacturer.
- B. Follow manufacturer's recommended procedures for producing best results, including testing of substrates, moisture in substrates, and humidity and temperature limitations.
- C. Do not apply exterior paint and finishes during rain or snow, or when relative humidity is outside the humidity ranges required by the paint product manufacturer.
- D. Minimum Application Temperatures for Latex Paints: 50 degrees F for exterior; unless required otherwise by manufacturer's instructions.
- E. Provide lighting level of 80 ft candles measured mid-height at substrate surface.

PART 2 PRODUCTS

2.1 MANUFACTURERS

- A. Provide paints and finishes from the same manufacturer to the greatest extent possible.
 - 1. Substitution of other products by the same manufacturer is preferred over substitution of products by a different manufacturer.
- B. Paints:
 - 1. Dunn-Edwards Corporation: www.dunnedwards.com.
 - 2. Behr Process Corporation: www.behr.com.
 - 3. Sherwin-Williams Company: www.sherwin-williams.com.
- C. Primer Sealers: Same manufacturer as top coats.
- D. Substitutions: See Section 01 60 00 Product Requirements.
- 2.2 PAINTS AND FINISHES GENERAL
 - A. Paints and Finishes: Ready mixed, unless required to be a field-catalyzed paint.
 - 1. Provide paints and finishes of a soft paste consistency, capable of being readily and uniformly dispersed to a homogeneous coating, with good flow and brushing properties, and capable of drying or curing free of streaks or sags.
 - 2. Provide materials that are compatible with one another and the substrates indicated under conditions of service and application, as demonstrated by manufacturer based on testing and field experience.
 - 3. For opaque finishes, tint each coat including primer coat and intermediate coats, one-half shade lighter than succeeding coat, with final finish coat as base color.
 - 4. Supply each paint material in quantity required to complete entire project's work from a single production run.
 - 5. Do not reduce, thin, or dilute paint or finishes or add materials unless such procedure is specifically described in manufacturer's product instructions.
 - B. Volatile Organic Compound (VOC) Content: Comply with Section 01 61 16.
 - C. Flammability: Comply with applicable code for surface burning characteristics.
 - D. Sheens: Provide the sheens specified; where sheen is not specified, sheen will be selected later by Architect from the manufacturer's full line.
 - E. Colors: As indicated on drawings or as required to match existing.
 - 1. Extend colors to surface edges; colors may change at any edge as directed by Architect.

2.3 PAINT SYSTEMS - EXTERIOR

- A. Exterior Surfaces to be Painted, Unless Otherwise Indicated: Including concrete and primed metal.
 - 1. Two top coats and one coat primer.
 - 2. Top Coat(s): Exterior Latex; MPI #10, 11, 15, 119, or 214.

- a. Products:
 - 1) Behr Premium Plus Exterior.
 - 2) Dunn-Edwards SPARTASHIELD.
 - 3) Sherwin-Williams A-100.
- 4) Substitutions: Section 01 60 00 Product Requirements.
- 3. Top Coat Sheen: As selected by Architect or as required to match existing.
- 4. Primer: As recommended by top coat manufacturer for specific substrate.

2.4 ACCESSORY MATERIALS

- A. Accessory Materials: Provide primers, sealers, cleaning agents, cleaning cloths, sanding materials, and clean-up materials as required for final completion of painted surfaces.
- B. Patching Material: Latex filler.
- C. Fastener Head Cover Material: Latex filler.

PART 3 EXECUTION

3.1 EXAMINATION

- A. Do not begin application of paints and finishes until substrates have been properly prepared.
- B. Verify that surfaces are ready to receive work as instructed by the product manufacturer.
- C. Examine surfaces scheduled to be finished prior to commencement of work. Report any condition that may potentially effect proper application.
- D. If substrate preparation is the responsibility of another installer, notify Architect of unsatisfactory preparation before proceeding.
- E. Test shop-applied primer for compatibility with subsequent cover materials.
- F. Measure moisture content of surfaces using an electronic moisture meter. Do not apply finishes unless moisture content of surfaces are below the following maximums:
 - 1. Exterior Plaster and Stucco: 12 percent.
 - 2. Masonry, Concrete, and Concrete Masonry Units: 12 percent.
 - 3. Concrete Floors and Traffic Surfaces: 8 percent.

3.2 PREPARATION

- A. Clean surfaces thoroughly and correct defects prior to application.
- B. Prepare surfaces using the methods recommended by the manufacturer for achieving the best result for the substrate under the project conditions.
- C. Remove or repair existing paints or finishes that exhibit surface defects.
- D. Remove or mask surface appurtenances, including electrical plates, hardware, light fixture trim, escutcheons, and fittings, prior to preparing surfaces for finishing.
- E. Seal surfaces that might cause bleed through or staining of topcoat.
- F. Remove mildew from impervious surfaces by scrubbing with solution of tetra-sodium phosphate and bleach. Rinse with clean water and allow surface to dry.
- G. Concrete:
 - 1. Prepare surface as recommended by top coat manufacturer and according to SSPC-SP 13.
- H. Masonry:
 - 1. Prepare surface as recommended by top coat manufacturer.
- I. Exterior Plaster: Fill hairline cracks, small holes, and imperfections with exterior patching plaster. Make smooth and flush with adjacent surfaces. Wash and neutralize high alkali surfaces.
- J. Concrete Floors and Traffic Surfaces: Remove contamination, acid etch, and rinse floors with clear water. Verify required acid-alkali balance is achieved. Allow to dry.
- K. Aluminum: Remove surface contamination and oils and wash with solvent according to SSPC-SP 1.

- L. Galvanized Surfaces: Remove surface contamination and oils and prepare surface according to SSPC-SP 16.
- M. Ferrous Metal:
 - 1. Solvent clean according to SSPC-SP 1.
 - 2. Shop-Primed Surfaces: Sand and scrape to remove loose primer and rust. Feather edges to make touch-up patches inconspicuous. Clean surfaces with solvent. Prime bare steel surfaces. Re-prime entire shop-primed item.
 - Remove rust, loose mill scale, and other foreign substances using using methods recommended in writing by paint manufacturer and blast cleaning according to SSPC-SP 6 "Commercial Blast Cleaning". Protect from corrosion until coated.
- N. Metal Doors to be Painted: Prime metal door top and bottom edge surfaces.

3.3 APPLICATION

- A. Remove unfinished louvers, grilles, covers, and access panels on mechanical and electrical components and paint separately.
- B. Apply products in accordance with manufacturer's written instructions and recommendations in "MPI Architectural Painting Specification Manual".
- C. Where adjacent sealant is to be painted, do not apply finish coats until sealant is applied.
- D. Do not apply finishes to surfaces that are not dry. Allow applied coats to dry before next coat is applied.
- E. Apply each coat to uniform appearance.
- F. Dark Colors and Deep Clear Colors: Regardless of number of coats specified, apply additional coats until complete hide is achieved.
- G. Sand metal surfaces lightly between coats to achieve required finish.
- H. Vacuum clean surfaces of loose particles. Use tack cloth to remove dust and particles just prior to applying next coat.
- I. Reinstall electrical cover plates, hardware, light fixture trim, escutcheons, and fittings removed prior to finishing.

3.4 CLEANING

A. Collect waste material that could constitute a fire hazard, place in closed metal containers, and remove daily from site.

3.5 PROTECTION

- A. Protect finishes until completion of project.
- B. Touch-up damaged finishes after Substantial Completion.

END OF SECTION

SECTION 09 91 23 - INTERIOR PAINTING

PART 1 GENERAL

- 1.1 SECTION INCLUDES
 - A. Surface preparation.
 - B. Field application of paints.
 - C. Scope: Finish interior surfaces exposed to view, unless fully factory-finished and unless otherwise indicated.
 - 1. Mechanical and Electrical:
 - a. In finished areas, paint insulated and exposed pipes, conduit, boxes, insulated and exposed ducts, hangers, brackets, collars and supports, mechanical equipment, and electrical equipment, unless factory finished or otherwise indicated.
 - b. In all areas, paint shop-primed items.
 - c. Paint dampers exposed behind louvers, grilles, to match face panels.
 - D. Do Not Paint or Finish the Following Items:
 - 1. Existing painted surfaces, unless affected by new Work or indicated otherwise.
 - 2. Items factory-finished unless otherwise indicated; materials and products having factory-applied primers are not considered factory finished.
 - 3. Items indicated to receive other finishes.
 - 4. Items indicated to remain unfinished.
 - 5. Fire rating labels, equipment serial number and capacity labels, bar code labels, and operating parts of equipment.
 - 6. Stainless steel, anodized aluminum, bronze, terne coated stainless steel, and lead items.
 - 7. Marble, granite, slate, and other natural stones.
 - 8. Floors, unless specifically indicated.
 - 9. Ceramic and other tiles.
 - 10. Brick, architectural concrete, cast stone, integrally colored plaster and stucco.
 - 11. Glass.
 - 12. Concrete masonry units in utility, mechanical, and electrical spaces.
 - 13. Acoustical materials, unless specifically indicated.
 - 14. Pipes, ducts, and conduits unless indicated otherwise.

1.2 RELATED REQUIREMENTS

- A. Section 01 61 16 Volatile Organic Compound (VOC) Content Restrictions.
- B. Section 09 91 13 Exterior Painting.
- C. Section 22 05 53 Identification for Plumbing Piping and Equipment: Painted identification.
- D. Section 22 05 53 Identification for Plumbing Piping and Equipment: Color coding scheme for items to be painted under this section.
- E. Section 23 05 53 Identification for HVAC Piping and Equipment: Painted identification.
- F. Section 23 05 53 Identification for HVAC Piping and Equipment: Color coding scheme for items to be painted under this section.
- G. Section 26 05 53 Identification for Electrical Systems: Painted identification.
- H. Section 26 05 53 Identification for Electrical Systems: Color coding scheme for items to be painted under this section.

1.3 DEFINITIONS

A. Conform to ASTM D16 for interpretation of terms used in this section.

1.4 REFERENCE STANDARDS

A. ASTM D16 - Standard Terminology for Paint, Related Coatings, Materials, and Applications; 2014.

- B. ASTM D4258 Standard Practice for Surface Cleaning Concrete for Coating; 2005 (Reapproved 2012).
- C. ASTM D4442 Standard Test Methods for Direct Moisture Content Measurement of Wood and Wood-Base Materials; 2007.
- D. MPI (APSM) Master Painters Institute Architectural Painting Specification Manual; Current Edition, www.paintinfo.com.
- E. SSPC-SP 1 Solvent Cleaning; 2015.
- F. SSPC-SP 16 Brush-Off Blast Cleaning of Coated and Uncoated Galvanized Steel, Stainless Steels, and Non-Ferrous Metals; 2010.
- G. SSPC-SP 6 Commercial Blast Cleaning; 2007.
- H. SSPC-SP 13 Surface Preparation of Concrete; (Reaffirmed 2015); 2003.

1.5 SUBMITTALS

- A. See Section 01 30 00 Administrative Requirements, for submittal procedures.
- B. Product Data: Provide complete list of products to be used, with the following information for each:
 - 1. Manufacturer's name, product name and/or catalog number, and general product category (e.g. "alkyd enamel").
 - 2. MPI product number (e.g. MPI #47).
 - 3. Cross-reference to specified paint system(s) product is to be used in; include description of each system.
 - 4. If proposal of substitutions is allowed under submittal procedures, explanation of substitutions proposed.
- C. Samples: Submit three paper "draw down" samples, 8-1/2 by 11 inches in size, illustrating range of colors available for each finishing product specified.
 - 1. Where sheen is specified, submit samples in only that sheen.
 - 2. Where sheen is not specified, discuss sheen options with Architect before preparing samples, to eliminate sheens definitely not required.
- D. Certification: By manufacturer that paints and finishes comply with VOC limits specified.
- E. Manufacturer's Instructions: Indicate special surface preparation procedures and substrate conditions requiring special attention.
- F. Maintenance Data: Submit data including finish schedule showing where each product/color/finish was used, product technical data sheets, material safety data sheets (MSDS), care and cleaning instructions, touch-up procedures, repair of painted and finished surfaces, and color samples of each color and finish used.
- G. Maintenance Materials: Furnish the following for Owner's use in maintenance of project.
 - 1. See Section 01 60 00 Product Requirements, for additional provisions.
 - 2. Extra Paint and Finish Materials: 5 gallons of each color, type, and sheen; from the same product run, store where directed.
 - 3. Label each container with color, type, room locations, and sheen in addition to the manufacturer's label.

1.6 QUALITY ASSURANCE

- A. Manufacturer Qualifications: Company specializing in manufacturing the products specified, with minimum three years documented experience.
- B. Applicator Qualifications: Company specializing in performing the type of work specified with minimum three years documented experience.

1.7 DELIVERY, STORAGE, AND HANDLING

A. Deliver products to site in sealed and labeled containers; inspect to verify acceptability.

- B. Container Label: Include manufacturer's name, type of paint, brand name, lot number, brand code, coverage, surface preparation, drying time, cleanup requirements, color designation, and instructions for mixing and reducing.
- C. Paint Materials: Store at minimum ambient temperature of 45 degrees F and a maximum of 90 degrees F, in ventilated area, and as required by manufacturer's instructions.
- 1.8 FIELD CONDITIONS
 - A. Do not apply materials when surface and ambient temperatures are outside the temperature ranges required by the paint product manufacturer.
 - B. Follow manufacturer's recommended procedures for producing best results, including testing of substrates, moisture in substrates, and humidity and temperature limitations.
 - C. Do not apply materials when relative humidity exceeds 85 percent; at temperatures less than 5 degrees F above the dew point; or to damp or wet surfaces.
 - D. Minimum Application Temperatures for Paints: 50 degrees F for interiors unless required otherwise by manufacturer's instructions.
 - E. Provide lighting level of 80 ft candles measured mid-height at substrate surface.

PART 2 PRODUCTS

2.1 MANUFACTURERS

- A. Provide paints and finishes from the same manufacturer to the greatest extent possible.
 - 1. Substitution of other products by the same manufacturer is preferred over substitution of products by a different manufacturer.
- B. Paints:
 - 1. Dunn Edwards Corporation: www.dunnedwards.com.
 - 2. Behr Process Corporation: www.behr.com.
 - 3. Sherwin-Williams Company: www.sherwin-williams.com.
- C. Primer Sealers: Same manufacturer as top coats.
- D. Substitutions: See Section 01 60 00 Product Requirements.
- 2.2 PAINTS AND FINISHES GENERAL
 - A. Paints and Finishes: Ready mixed, unless intended to be a field-catalyzed paint.
 - 1. Provide paints and finishes of a soft paste consistency, capable of being readily and uniformly dispersed to a homogeneous coating, with good flow and brushing properties, and capable of drying or curing free of streaks or sags.
 - 2. Provide materials that are compatible with one another and the substrates indicated under conditions of service and application, as demonstrated by manufacturer based on testing and field experience.
 - 3. For opaque finishes, tint each coat including primer coat and intermediate coats, one-half shade lighter than succeeding coat, with final finish coat as base color.
 - 4. Supply each paint material in quantity required to complete entire project's work from a single production run.
 - 5. Do not reduce, thin, or dilute paint or finishes or add materials unless such procedure is specifically described in manufacturer's product instructions.
 - B. Volatile Organic Compound (VOC) Content: Comply with Section 01 61 16.
 - C. Flammability: Comply with applicable code for surface burning characteristics.
 - D. Sheens: Provide the sheens specified; where sheen is not specified, sheen will be selected later by Architect from the manufacturer's full line.
 - E. Colors: As indicated on drawings.
 - 1. Extend colors to surface edges; colors may change at any edge as directed by Architect.

- 2. In finished areas, finish pipes, ducts, conduit, and equipment the same color as the wall/ceiling they are mounted on/under.
- 3. In utility areas, finish equipment, piping, conduit, and exposed duct work in colors according to the color coding scheme indicated.

2.3 PAINT SYSTEMS - INTERIOR

- A. Interior Surfaces to be Painted, Unless Otherwise Indicated: Including gypsum board, concrete, wood, plaster, uncoated steel, shop primed steel, galvanized steel, and aluminum.
 - 1. Two top coats and one coat primer.
 - 2. Top Coat(s): Interior Latex; MPI #43, 44, 52, 53, 54, or 114.
 - a. Products:
 - 1) Behr Premium Plus Interior.
 - 2) Sherwin-Williams ProMar 200 Zero VOC Interior Latex.
 - 3) Dunn Edwards SPARTAZERO.
 - 4) Substitutions: Section 01 60 00 Product Requirements.
 - 3. Top Coat Sheen: As selected by Architect or as required to match existing.
 - 4. Primer: As recommended by top coat manufacturer for specific substrate.

2.4 ACCESSORY MATERIALS

- A. Accessory Materials: Provide primers, sealers, cleaning agents, cleaning cloths, sanding materials, and clean-up materials as required for final completion of painted surfaces.
- B. Patching Material: Latex filler.
- C. Fastener Head Cover Material: Latex filler.

PART 3 EXECUTION

3.1 EXAMINATION

- A. Do not begin application of paints and finishes until substrates have been properly prepared.
- B. Verify that surfaces are ready to receive work as instructed by the product manufacturer.
- C. Examine surfaces scheduled to be finished prior to commencement of work. Report any condition that may potentially effect proper application.
- D. If substrate preparation is the responsibility of another installer, notify Architect of unsatisfactory preparation before proceeding.
- E. Test shop-applied primer for compatibility with subsequent cover materials.
- F. Measure moisture content of surfaces using an electronic moisture meter. Do not apply finishes unless moisture content of surfaces are below the following maximums:
 - 1. Gypsum Wallboard: 12 percent.
 - 2. Plaster and Stucco: 12 percent.
 - 3. Masonry, Concrete, and Concrete Masonry Units : 12 percent.
 - 4. Interior Wood: 15 percent, measured in accordance with ASTM D4442.

3.2 PREPARATION

- A. Clean surfaces thoroughly and correct defects prior to application.
- B. Prepare surfaces using the methods recommended by the manufacturer for achieving the best result for the substrate under the project conditions.
- C. Remove or repair existing paints or finishes that exhibit surface defects.
- D. Remove surface appurtenances, including electrical plates, hardware, light fixture trim, escutcheons, and fittings, prior to preparing surfaces or finishing.
- E. Seal surfaces that might cause bleed through or staining of topcoat.
- F. Remove mildew from impervious surfaces by scrubbing with solution of tetra-sodium phosphate and bleach. Rinse with clean water and allow surface to dry.

- G. Concrete:
 - 1. Remove release agents, curing compounds, efflorescence, and chalk. Do not coat surfaces if moisture content or alkalinity of surfaces to be coated exceeds that permitted in manufacturer's written instructions.
 - 2. Clean surfaces with pressurized water. Use pressure range of 1500 to 4000 psi at 6 to 12 inches. Allow to dry.
 - 3. Clean concrete according to ASTM D4258. Allow to dry.
 - 4. Prepare surface as recommended by top coat manufacturer and according to SSPC-SP 13.
- H. Masonry:
 - 1. Remove efflorescence and chalk. Do not coat surfaces if moisture content or alkalinity of surfaces or if alkalinity of mortar joints exceed that permitted in manufacturer's written instructions. Allow to dry.
 - 2. Prepare surface as recommended by top coat manufacturer.
 - 3. Clean surfaces with pressurized water. Use pressure range of 600 to 1500 psi at 6 to 12 inches. Allow to dry.
- I. Gypsum Board: Fill minor defects with filler compound. Spot prime defects after repair.
- J. Plaster: Fill hairline cracks, small holes, and imperfections with latex patching plaster. Make smooth and flush with adjacent surfaces. Wash and neutralize high alkali surfaces.
- K. Insulated Coverings: Remove dirt, grease, and oil from canvas and cotton.
- L. Aluminum: Remove surface contamination and oils and wash with solvent according to SSPC-SP 1.
- M. Galvanized Surfaces: Remove surface contamination and oils and prepare surface according to SSPC-SP 16.
- N. Ferrous Metal:
 - 1. Solvent clean according to SSPC-SP 1.
 - 2. Shop-Primed Surfaces: Sand and scrape to remove loose primer and rust. Feather edges to make touch-up patches inconspicuous. Clean surfaces with solvent. Prime bare steel surfaces.
 - Remove rust, loose mill scale, and other foreign substances using using methods recommended in writing by paint manufacturer and blast cleaning according to SSPC-SP 6 "Commercial Blast Cleaning". Protect from corrosion until coated.
- O. Wood Surfaces to Receive Opaque Finish: Wipe off dust and grit prior to priming. Seal knots, pitch streaks, and sappy sections with sealer. Fill nail holes and cracks after primer has dried; sand between coats. Back prime concealed surfaces before installation.
- P. Metal Doors to be Painted: Prime metal door top and bottom edge surfaces.

3.3 APPLICATION

- A. Remove unfinished louvers, grilles, covers, and access panels on mechanical and electrical components and paint separately.
- B. Apply products in accordance with manufacturer's written instructions and recommendations in "MPI Architectural Painting Specification Manual".
- C. Where adjacent sealant is to be painted, do not apply finish coats until sealant is applied.
- D. Do not apply finishes to surfaces that are not dry. Allow applied coats to dry before next coat is applied.
- E. Apply each coat to uniform appearance in thicknesses specified by manufacturer.
- F. Dark Colors and Deep Clear Colors: Regardless of number of coats specified, apply as many coats as necessary for complete hide.
- G. Sand metal surfaces lightly between coats to achieve required finish.
- H. Vacuum clean surfaces of loose particles. Use tack cloth to remove dust and particles just prior to applying next coat.

I. Reinstall electrical cover plates, hardware, light fixture trim, escutcheons, and fittings removed prior to finishing.

3.4 CLEANING

A. Collect waste material that could constitute a fire hazard, place in closed metal containers, and remove daily from site.

3.5 PROTECTION

- A. Protect finishes until completion of project.
- B. Touch-up damaged finishes after Substantial Completion.

END OF SECTION

SECTION 10 14 00 - SIGNAGE

PART 1 GENERAL

- 1.1 SECTION INCLUDES
 - A. Traffic signs.
- 1.2 REFERENCE STANDARDS
 - A. ASTM D4956 Standard Specification for Retroreflective Sheeting for Traffic Control; 2017.

1.3 SUBMITTALS

- A. See Section 01 30 00 Administrative Requirements, for submittal procedures.
- B. Product Data: Manufacturer's printed product literature for each type of sign, indicating sign styles, font, foreground and background colors, locations, overall dimensions of each sign.
- C. Signage Schedule: Provide information sufficient to completely define each sign for fabrication, including room number, room name, other text to be applied, sign and letter sizes, fonts, and colors.
 - 1. When room numbers to appear on signs differ from those on drawings, include the drawing room number on schedule.
 - 2. Submit for approval by Owner through Architect prior to fabrication.
- D. Manufacturer's Installation Instructions: Include installation templates and attachment devices.

1.4 QUALITY ASSURANCE

- A. Manufacturer Qualifications: Company specializing in manufacturing the products specified in this section with minimum three years of documented experience.
- 1.5 DELIVERY, STORAGE, AND HANDLING
 - A. Package signs as required to prevent damage before installation.

PART 2 PRODUCTS

- 2.1 SIGNAGE APPLICATIONS
 - A. Traffic Signs: To match campus standards; locate where indicated on drawings.

2.2 SIGN TYPES

- A. Flat Signs: Signage media without frame.
 - 1. Edges: Square.
 - 2. Corners: Radiused.
 - 3. Size: Match existing.
 - 4. Post Mounting: Galvanized steel U-channel, exposed hardware.
- B. Color and Font: Unless otherwise indicated:
 - 1. Character Font: Match existing.
 - 2. Character Case: Upper case only.
 - 3. Background Color: White.
 - 4. Character Color: Black color.

2.3 NON-TACTILE SIGNAGE MEDIA

A. Aluminum, 0.080 inch thick, with Engineer Grade reflective film, ASTM D4956 Type I, with digital printing, for exterior use.

2.4 ACCESSORIES

A. Exposed Screws: Galvanized or stainless steel.

B. U-Channel Sign Post: Galvanized steel, with pre-drilled holes; Length to match existing or as required to mount sign at height required by authorities having jurisdiction.

PART 3 EXECUTION

- 3.1 EXAMINATION
 - A. Verify that substrate surfaces are ready to receive work.

3.2 INSTALLATION

- A. Install in accordance with manufacturer's instructions.
- B. Install neatly, with horizontal edges level.
- C. Locate signs and mount at heights indicated on drawings.
- D. Protect from damage until Substantial Completion; repair or replace damaged items.

END OF SECTION

SECTION 220517 - SLEEVES AND SLEEVE SEALS FOR PLUMBING PIPING

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. Section Includes:
 - 1. Sleeves.
 - 2. Sleeve-seal systems.
 - 3. Sleeve-seal fittings.
 - 4. Grout.

1.3 ACTION SUBMITTALS

A. Product Data: For each type of product indicated.

PART 2 - PRODUCTS

2.1 SLEEVES

- A. Galvanized-Steel-Pipe Sleeves: ASTM A 53/A 53M, Type E, Grade B, Schedule 40, zinc coated, with plain ends.
- B. Galvanized-Steel-Sheet Sleeves: 0.0239-inch minimum thickness; round tube closed with welded longitudinal joint.

2.2 SLEEVE-SEAL SYSTEMS

- A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
- B. Basis-of-Design Product: Subject to compliance with requirements, provide or comparable product by one of the following:
 - 1. Advance Products & Systems, Inc.
 - 2. CALPICO, Inc.
 - 3. Metraflex Company (The).
 - 4. Pipeline Seal and Insulator, Inc.

- 5. Proco Products, Inc.
- C. Description: Modular sealing-element unit, designed for field assembly, for filling annular space between piping and sleeve.
 - 1. Sealing Elements: EPDM-rubber interlocking links shaped to fit surface of pipe. Include type and number required for pipe material and size of pipe.
 - 2. Pressure Plates: Carbon steel.
 - 3. Connecting Bolts and Nuts: Carbon steel, with corrosion-resistant coating, of length required to secure pressure plates to sealing elements.

2.3 SLEEVE-SEAL FITTINGS

- A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
- B. Basis-of-Design Product: Subject to compliance with requirements, provide or comparable product by one of the following:
 - 1. Presealed Systems.
- C. Description: Manufactured plastic, sleeve-type, waterstop assembly made for imbedding in concrete slab or wall. Unit has plastic or rubber waterstop collar with center opening to match piping OD.

2.4 GROUT

- A. Standard: ASTM C 1107/C 1107M, Grade B, post-hardening and volume-adjusting, dry, hydraulic-cement grout.
- B. Characteristics: Nonshrink; recommended for interior and exterior applications.
- C. Design Mix: 5000-psi, 28-day compressive strength.
- D. Packaging: Premixed and factory packaged.

PART 3 - EXECUTION

3.1 SLEEVE INSTALLATION

- A. Install sleeves for piping passing through penetrations in floors, partitions, roofs, and walls.
- B. For sleeves that will have sleeve-seal system installed, select sleeves of size large enough to provide 1-inch annular clear space between piping and concrete slabs and walls.
 - 1. Sleeves are not required for core-drilled holes.

- C. Install sleeves in concrete floors, concrete roof slabs, and concrete walls as new slabs and walls are constructed.
 - 1. Permanent sleeves are not required for holes in slabs formed by molded-PE or -PP sleeves.
 - 2. Cut sleeves to length for mounting flush with both surfaces.
 - a. Exception: Extend sleeves installed in floors of mechanical equipment areas or other wet areas 2 inches above finished floor level.
 - 3. Using grout, seal the space outside of sleeves in slabs and walls without sleeveseal system.
- D. Install sleeves for pipes passing through interior partitions.
 - 1. Cut sleeves to length for mounting flush with both surfaces.
 - 2. Install sleeves that are large enough to provide 1/4-inch annular clear space between sleeve and pipe or pipe insulation.
 - 3. Seal annular space between sleeve and piping or piping insulation; use joint sealants appropriate for size, depth, and location of joint. Comply with requirements for sealants specified in Section 079200 "Joint Sealants."
- E. Fire-Barrier Penetrations: Maintain indicated fire rating of walls, partitions, ceilings, and floors at pipe penetrations. Seal pipe penetrations with firestop materials.
 Comply with requirements for firestopping specified in Section 078413 "Penetration Firestopping."

3.2 SLEEVE-SEAL-SYSTEM INSTALLATION

- A. Install sleeve-seal systems in sleeves in exterior concrete walls and slabs-on-grade at service piping entries into building.
- B. Select type, size, and number of sealing elements required for piping material and size and for sleeve ID or hole size. Position piping in center of sleeve. Center piping in penetration, assemble sleeve-seal system components, and install in annular space between piping and sleeve. Tighten bolts against pressure plates that cause sealing elements to expand and make a watertight seal.

3.3 SLEEVE-SEAL-FITTING INSTALLATION

- A. Install sleeve-seal fittings in new walls and slabs as they are constructed.
- B. Assemble fitting components of length to be flush with both surfaces of concrete slabs and walls. Position waterstop flange to be centered in concrete slab or wall.
- C. Secure nailing flanges to concrete forms.
- D. Using grout, seal the space around outside of sleeve-seal fittings.

3.4 SLEEVE AND SLEEVE-SEAL SCHEDULE

- A. Use sleeves and sleeve seals for the following piping-penetration applications:
 - 1. Exterior Concrete Walls above Grade:
 - a. Piping Smaller Than NPS 6: Sleeve-seal fittings.
 - b. Piping NPS 6 and Larger: Galvanized-steel-pipe sleeves.
 - 2. Exterior Concrete Walls below Grade:
 - a. Piping Smaller Than NPS 6: Galvanized-steel-pipe sleeves with sleeveseal system Sleeve-seal fittings.
 - 1) Select sleeve size to allow for 1-inch annular clear space between piping and sleeve for installing sleeve-seal system.
 - b. Piping NPS 6 and Larger: Galvanized-steel-pipe sleeves with sleeve-seal system.
 - 1) Select sleeve size to allow for 1-inch annular clear space between piping and sleeve for installing sleeve-seal system.
 - 3. Concrete Slabs above Grade:
 - a. Piping Smaller Than NPS 6: Sleeve-seal fittings.
 - b. Piping NPS 6 and Larger: Galvanized-steel-pipe sleeves.
 - 4. Interior Partitions:
 - a. Piping Smaller Than NPS 6: Galvanized-steel-pipe sleeves.
 - b. Piping NPS 6 and Larger: Galvanized-steel-sheet sleeves.

END OF SECTION 220517

SECTION 220523 - GENERAL-DUTY VALVES FOR PLUMBING PIPING

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. Section Includes:
 - 1. Bronze ball valves.
 - 2. Iron, single-flange butterfly valves.
 - 3. Bronze lift check valves.
 - 4. Bronze swing check valves.
 - 5. Iron swing check valves.
 - 6. Iron, plate-type check valves.
- B. Related Sections:
 - 1. Section 220553 "Identification for Plumbing Piping and Equipment" for valve tags and schedules.
 - 2. Section 221116 "Domestic Water Piping" for valves applicable only to this piping.
 - 3. Section 221513 "General-Service Compressed-Air Piping" for valves applicable only to this piping.

1.3 DEFINITIONS

- A. CWP: Cold working pressure.
- B. EPDM: Ethylene propylene copolymer rubber.
- C. NBR: Acrylonitrile-butadiene, Buna-N, or nitrile rubber.
- D. NRS: Nonrising stem.
- E. OS&Y: Outside screw and yoke.
- F. RS: Rising stem.
- G. SWP: Steam working pressure.

1.4 ACTION SUBMITTALS

A. Product Data: For each type of valve indicated.

1.5 QUALITY ASSURANCE

- A. Source Limitations for Valves: Obtain each type of valve from single source from single manufacturer.
- B. ASME Compliance:
 - 1. ASME B16.10 and ASME B16.34 for ferrous valve dimensions and design criteria.
 - 2. ASME B31.1 for power piping valves.
 - 3. ASME B31.9 for building services piping valves.
- C. NSF Compliance: NSF 61 for valve materials for potable-water service.

1.6 DELIVERY, STORAGE, AND HANDLING

- A. Prepare valves for shipping as follows:
 - 1. Protect internal parts against rust and corrosion.
 - 2. Protect threads, flange faces, grooves, and weld ends.
 - 3. Set angle, gate, and globe valves closed to prevent rattling.
 - 4. Set ball and plug valves open to minimize exposure of functional surfaces.
 - 5. Set butterfly valves closed or slightly open.
 - 6. Block check valves in either closed or open position.
- B. Use the following precautions during storage:
 - 1. Maintain valve end protection.
 - 2. Store valves indoors and maintain at higher than ambient dew point temperature. If outdoor storage is necessary, store valves off the ground in watertight enclosures.
- C. Use sling to handle large valves; rig sling to avoid damage to exposed parts. Do not use handwheels or stems as lifting or rigging points.

PART 2 - PRODUCTS

2.1 GENERAL REQUIREMENTS FOR VALVES

- A. Refer to valve schedule articles for applications of valves.
- B. Valve Pressure and Temperature Ratings: Not less than indicated and as required for system pressures and temperatures.

- C. Valve Sizes: Same as upstream piping unless otherwise indicated.
- D. Valve Actuator Types:
 - 1. Gear Actuator: For quarter-turn valves NPS 8 and larger.
 - 2. Handwheel: For valves other than quarter-turn types.
 - 3. Handlever: For quarter-turn valves NPS 6 and smaller.
 - 4. Wrench: For plug valves with square heads. Furnish Owner with 1 wrench for every 5 plug valves, for each size square plug-valve head.
- E. Valves in Insulated Piping: With 2-inch stem extensions and the following features:
 - 1. Gate Valves: With rising stem.
 - 2. Ball Valves: With extended operating handle of non-thermal-conductive material, and protective sleeve that allows operation of valve without breaking the vapor seal or disturbing insulation.
 - 3. Butterfly Valves: With extended neck.
- F. Valve-End Connections:
 - 1. Flanged: With flanges according to ASME B16.1 for iron valves.
 - 2. Grooved: With grooves according to AWWA C606.
 - 3. Solder Joint: With sockets according to ASME B16.18.
 - 4. Threaded: With threads according to ASME B1.20.1.
- G. Valve Bypass and Drain Connections: MSS SP-45.

2.2 BRONZE BALL VALVES

- A. Two-Piece, Full-Port, Bronze Ball Valves with Stainless-Steel Trim:
 - 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - a. Conbraco Industries, Inc.; Apollo Valves.
 - b. Crane Co.; Crane Valve Group; Crane Valves.
 - c. NIBCO INC.

2. Description:

- a. Standard: MSS SP-110.
- b. SWP Rating: 150 psig.
- c. CWP Rating: 600 psig.
- d. Body Design: Two piece.
- e. Body Material: Bronze.
- f. Ends: Threaded.
- g. Seats: PTFE or TFE.
- h. Stem: Stainless steel.
- i. Ball: Stainless steel, vented.
- j. Port: Full.

2.3 IRON, SINGLE-FLANGE BUTTERFLY VALVES

- A. 200 CWP, Iron, Single-Flange Butterfly Valves with EPDM Seat and Stainless-Steel Disc:
 - 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - a. Conbraco Industries, Inc.; Apollo Valves.
 - b. Crane Co.; Crane Valve Group; Jenkins Valves.
 - c. Crane Co.; Crane Valve Group; Stockham Division.
 - d. NIBCO INC.
 - 2. Description:
 - a. Standard: MSS SP-67, Type I.
 - b. CWP Rating: 200 psig.
 - c. Body Design: Lug type; suitable for bidirectional dead-end service at rated pressure without use of downstream flange.
 - d. Body Material: ASTM A 126, cast iron or ASTM A 536, ductile iron.
 - e. Seat: EPDM.
 - f. Stem: One- or two-piece stainless steel.
 - g. Disc: Stainless steel.

2.4 BRONZE LIFT CHECK VALVES

- A. Class 125, Lift Check Valves with Bronze Disc:
 - 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - a. Crane Co.; Crane Valve Group; Crane Valves.
 - b. Crane Co.; Crane Valve Group; Jenkins Valves.
 - c. Crane Co.; Crane Valve Group; Stockham Division.
 - 2. Description:
 - a. Standard: MSS SP-80, Type 1.
 - b. CWP Rating: 200 psig.
 - c. Body Design: Vertical flow.
 - d. Body Material: ASTM B 61 or ASTM B 62, bronze.
 - e. Ends: Threaded.
 - f. Disc: Bronze.

2.5 BRONZE SWING CHECK VALVES

- A. Class 125, Bronze Swing Check Valves with Bronze Disc:
 - 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

- Crane Co.; Crane Valve Group; Crane Valves. a.
- Crane Co.; Crane Valve Group; Jenkins Valves. b.
- Crane Co.; Crane Valve Group; Stockham Division. c.
- d. NIBCO INC.
- 2. Description:
 - Standard: MSS SP-80, Type 3. a.
 - b.
 - CWP Rating: 200 psig. Body Design: Horizontal flow. c.
 - Body Material: ASTM B 62, bronze. d.
 - Ends: Threaded. e.
 - f. Disc: Bronze.
- B. Class 150, Bronze Swing Check Valves with Bronze Disc:
 - 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - Crane Co.; Crane Valve Group; Crane Valves. a.
 - Crane Co.; Crane Valve Group; Jenkins Valves. b.
 - Crane Co.; Crane Valve Group; Stockham Division. c.
 - NIBCO INC. d.
 - 2. Description:
 - Standard: MSS SP-80, Type 3. a.
 - CWP Rating: 300 psig. b.
 - Body Design: Horizontal flow. c.
 - Body Material: ASTM B 62, bronze. d.
 - Ends: Threaded. e.
 - Disc: Bronze. f.

2.6 **IRON SWING CHECK VALVES**

- A. Class 125, Iron Swing Check Valves with Metal Seats:
 - 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - Crane Co.; Crane Valve Group; Crane Valves. a.
 - Crane Co.; Crane Valve Group; Jenkins Valves. b.
 - Crane Co.; Crane Valve Group; Stockham Division. c.
 - NIBCO INC. d.
 - 2. Description:
 - Standard: MSS SP-71, Type I. a.
 - b. CWP Rating: 200 psig.
 - Body Design: Clear or full waterway. c.

- d. Body Material: ASTM A 126, gray iron with bolted bonnet.
- e. Ends: Flanged.
- f. Trim: Bronze.
- g. Gasket: Asbestos free.
- B. Class 250, Iron Swing Check Valves with Metal Seats:
 - 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - a. Crane Co.; Crane Valve Group; Crane Valves.
 - b. Crane Co.; Crane Valve Group; Jenkins Valves.
 - c. Crane Co.; Crane Valve Group; Stockham Division.
 - d. NIBCO INC.
 - 2. Description:
 - a. Standard: MSS SP-71, Type I.
 - b. CWP Rating: 500 psig.
 - c. Body Design: Clear or full waterway.
 - d. Body Material: ASTM A 126, gray iron with bolted bonnet.
 - e. Ends: Flanged.
 - f. Trim: Bronze.
 - g. Gasket: Asbestos free.

2.7 IRON, PLATE-TYPE CHECK VALVES

- A. Class 150, Iron, Dual-Plate Check Valves with Metal Seat:
 - 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - a. Crane Co.; Crane Valve Group; Crane Valves.
 - 2. Description:
 - a. Standard: API 594.
 - b. CWP Rating: 300 psig.
 - c. Body Design: Wafer, spring-loaded plates.
 - d. Body Material: ASTM A 395/A 395M or ASTM A 536, ductile iron.
 - e. Seat: Bronze.
- B. Class 250, Iron, Dual-Plate Check Valves with Metal Seat:
 - 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - a. Crane Co.; Crane Valve Group; Crane Valves.
 - 2. Description:
- a. Standard: API 594.
- b. CWP Rating: 400 psig.
- c. Body Design: Wafer, spring-loaded plates.
- d. Body Material: ASTM A 126, gray iron.
- e. Seat: Bronze.

PART 3 - EXECUTION

3.1 EXAMINATION

- A. Examine valve interior for cleanliness, freedom from foreign matter, and corrosion. Remove special packing materials, such as blocks, used to prevent disc movement during shipping and handling.
- B. Operate valves in positions from fully open to fully closed. Examine guides and seats made accessible by such operations.
- C. Examine threads on valve and mating pipe for form and cleanliness.
- D. Examine mating flange faces for conditions that might cause leakage. Check bolting for proper size, length, and material. Verify that gasket is of proper size, that its material composition is suitable for service, and that it is free from defects and damage.
- E. Do not attempt to repair defective valves; replace with new valves.

3.2 VALVE INSTALLATION

- A. Install valves with unions or flanges at each piece of equipment arranged to allow service, maintenance, and equipment removal without system shutdown.
- B. Locate valves for easy access and provide separate support where necessary.
- C. Install valves in horizontal piping with stem at or above center of pipe.
- D. Install valves in position to allow full stem movement.
- E. Install check valves for proper direction of flow and as follows:
 - 1. Swing Check Valves: In horizontal position with hinge pin level.
 - 2. Center-Guided and Plate-Type Check Valves: In horizontal or vertical position, between flanges.
 - 3. Lift Check Valves: With stem upright and plumb.

3.3 ADJUSTING

A. Adjust or replace valve packing after piping systems have been tested and put into service but before final adjusting and balancing. Replace valves if persistent leaking occurs.

3.4 GENERAL REQUIREMENTS FOR VALVE APPLICATIONS

- A. If valve applications are not indicated, use the following:
 - 1. Shutoff Service: Ball, butterfly valves.
 - 2. Butterfly Valve Dead-End Service: Single-flange (lug) type.
 - 3. Throttling Service: Globe , ball, or butterfly valves.
- B. If valves with specified SWP classes or CWP ratings are not available, the same types of valves with higher SWP classes or CWP ratings may be substituted.
- C. Select valves, except wafer types, with the following end connections:
 - 1. For Copper Tubing, NPS 2 and Smaller: Threaded ends except where solderjoint valve-end option is indicated in valve schedules below.
 - 2. For Copper Tubing, NPS 2-1/2 to NPS 4: Flanged ends except where threaded valve-end option is indicated in valve schedules below.
 - 3. For Copper Tubing, NPS 5 and Larger: Flanged ends.
 - 4. For Steel Piping, NPS 2 and Smaller: Threaded ends.
 - 5. For Steel Piping, NPS 2-1/2 to NPS 4: Flanged ends except where threaded valve-end option is indicated in valve schedules below.
 - 6. For Steel Piping, NPS 5 and Larger: Flanged ends.

3.5 DOMESTIC, HOT- AND COLD-WATER VALVE SCHEDULE

- A. Pipe NPS 2 and Smaller:
 - 1. Bronze Valves: May be provided with solder-joint ends instead of threaded ends.
 - 2. Ball Valves: Two piece, full port, bronze with stainless-steel trim.
 - 3. Bronze Swing Check Valves: Class 125 Class 150, bronze disc.
- B. Pipe NPS 2-1/2 and Larger:
 - 1. Iron Valves, NPS 2-1/2 to NPS 4: May be provided with threaded ends instead of flanged ends.
 - 2. Iron Ball Valves: Class 150.
 - 3. Iron, Single-Flange Butterfly Valves: 200 CWP, EPDM seat, stainless-steel disc.
 - 4. Iron, Plate-Type Check Valves: Class 150 Class 250 ; dual plate; metal seat.
 - 5. Ball Valves: Two piece, full port, bronze with stainless-steel trim.

END OF SECTION 220523

SECTION 220529 - HANGERS AND SUPPORTS FOR PLUMBING PIPING AND EQUIPMENT

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. Section Includes:
 - 1. Metal pipe hangers and supports.
 - 2. Trapeze pipe hangers.
 - 3. Metal framing systems.
 - 4. Thermal-hanger shield inserts.
 - 5. Fastener systems.
 - 6. Pipe stands.
 - 7. Pipe positioning systems.
 - 8. Equipment supports.
- B. Related Sections:
 - 1. Section 220548 "Vibration and Seismic Controls for Plumbing Piping and Equipment" for vibration isolation devices.

1.3 DEFINITIONS

A. MSS: Manufacturers Standardization Society of The Valve and Fittings Industry Inc.

1.4 PERFORMANCE REQUIREMENTS

- A. Structural Performance: Hangers and supports for plumbing piping and equipment shall withstand the effects of gravity loads and stresses within limits and under conditions indicated according to ASCE/SEI 7.
 - 1. Design equipment supports capable of supporting combined operating weight of supported equipment and connected systems and components.

1.5 ACTION SUBMITTALS

A. Product Data: For each type of product indicated.

- B. Shop Drawings: Signed and sealed by a qualified professional engineer. Show fabrication and installation details and include calculations for the following; include Product Data for components:
 - 1. Trapeze pipe hangers.
 - 2. Metal framing systems.
 - 3. Pipe stands.
 - 4. Equipment supports.

1.6 INFORMATIONAL SUBMITTALS

A. Welding certificates.

1.7 QUALITY ASSURANCE

- A. Structural Steel Welding Qualifications: Qualify procedures and personnel according to AWS D1.1/D1.1M, "Structural Welding Code Steel."
- B. Pipe Welding Qualifications: Qualify procedures and operators according to ASME Boiler and Pressure Vessel Code.

PART 2 - PRODUCTS

2.1 METAL PIPE HANGERS AND SUPPORTS

- A. Carbon-Steel Pipe Hangers and Supports:
 - 1. Description: MSS SP-58, Types 1 through 58, factory-fabricated components.
 - 2. Galvanized Metallic Coatings: Pregalvanized or hot dipped.
 - 3. Nonmetallic Coatings: Plastic coating, jacket, or liner.
 - 4. Padded Hangers: Hanger with fiberglass or other pipe insulation pad or cushion to support bearing surface of piping.
 - 5. Hanger Rods: Continuous-thread rod, nuts, and washer made of carbon steel.

2.2 TRAPEZE PIPE HANGERS

A. Description: MSS SP-69, Type 59, shop- or field-fabricated pipe-support assembly made from structural carbon-steel shapes with MSS SP-58 carbon-steel hanger rods, nuts, saddles, and U-bolts.

2.3 METAL FRAMING SYSTEMS

- A. MFMA Manufacturer Metal Framing Systems:
 - 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

- 2. Basis-of-Design Product: Subject to compliance with requirements, provide or comparable product by one of the following:
 - a. Allied Tube & Conduit.
 - b. Cooper B-Line, Inc.
 - c. Flex-Strut Inc.
 - d. GS Metals Corp.
 - e. Thomas & Betts Corporation.
 - f. Unistrut Corporation; Tyco International, Ltd.
 - g. Wesanco, Inc.
- 3. Description: Shop- or field-fabricated pipe-support assembly for supporting multiple parallel pipes.
- 4. Standard: MFMA-4.
- 5. Channels: Continuous slotted steel channel with inturned lips.
- 6. Channel Nuts: Formed or stamped steel nuts or other devices designed to fit into channel slot and, when tightened, prevent slipping along channel.
- 7. Hanger Rods: Continuous-thread rod, nuts, and washer made of carbon steel.
- 8. Metallic Coating: Electroplated zinc.
- 9. Plastic Coating: Polyurethane.

2.4 THERMAL-HANGER SHIELD INSERTS

- A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
- B. Basis-of-Design Product: Subject to compliance with requirements, provide or comparable product by one of the following:
 - 1. Carpenter & Paterson, Inc.
 - 2. Clement Support Services.
 - 3. ERICO International Corporation.
 - 4. National Pipe Hanger Corporation.
 - 5. PHS Industries, Inc.
 - 6. Pipe Shields, Inc.; a subsidiary of Piping Technology & Products, Inc.
 - 7. Piping Technology & Products, Inc.
 - 8. Rilco Manufacturing Co., Inc.
 - 9. Value Engineered Products, Inc.
- C. Insulation-Insert Material for Cold Piping: ASTM C 552, Type II cellular glass with 100-psig minimum compressive strength and vapor barrier.
- D. Insulation-Insert Material for Hot Piping: Water-repellent treated, ASTM C 533, Type I calcium silicate with 100-psig minimum compressive strength.
- E. For Trapeze or Clamped Systems: Insert and shield shall cover entire circumference of pipe.
- F. For Clevis or Band Hangers: Insert and shield shall cover lower 180 degrees of pipe.

G. Insert Length: Extend 2 inches beyond sheet metal shield for piping operating below ambient air temperature.

2.5 FASTENER SYSTEMS

- A. Powder-Actuated Fasteners: Threaded-steel stud, for use in hardened portland cement concrete with pull-out, tension, and shear capacities appropriate for supported loads and building materials where used.
- B. Mechanical-Expansion Anchors: Insert-wedge-type, zinc-coated steel anchors, for use in hardened portland cement concrete; with pull-out, tension, and shear capacities appropriate for supported loads and building materials where used.

2.6 PIPE STANDS

- A. General Requirements for Pipe Stands: Shop- or field-fabricated assemblies made of manufactured corrosion-resistant components to support roof-mounted piping.
- B. High-Type, Single-Pipe Stand:
 - 1. Description: Assembly of base, vertical and horizontal members, and pipe support, for roof installation without membrane penetration.
 - 2. Base: Stainless steel.
 - 3. Vertical Members: Two or more cadmium-plated-steel or stainless-steel, continuous-thread rods.
 - 4. Horizontal Member: Cadmium-plated-steel or stainless-steel rod with plastic or stainless-steel, roller-type pipe support.
- C. Curb-Mounting-Type Pipe Stands: Shop- or field-fabricated pipe supports made from structural-steel shapes, continuous-thread rods, and rollers, for mounting on permanent stationary roof curb.

2.7 PIPE POSITIONING SYSTEMS

A. Description: IAPMO PS 42, positioning system of metal brackets, clips, and straps for positioning piping in pipe spaces; for plumbing fixtures in commercial applications.

2.8 MISCELLANEOUS MATERIALS

- A. Structural Steel: ASTM A 36/A 36M, carbon-steel plates, shapes, and bars; black and galvanized.
- B. Grout: ASTM C 1107, factory-mixed and -packaged, dry, hydraulic-cement, nonshrink and nonmetallic grout; suitable for interior and exterior applications.
 - 1. Properties: Nonstaining, noncorrosive, and nongaseous.
 - 2. Design Mix: 5000-psi, 28-day compressive strength.

PART 3 - EXECUTION

3.1 HANGER AND SUPPORT INSTALLATION

- A. Metal Pipe-Hanger Installation: Comply with MSS SP-69 and MSS SP-89. Install hangers, supports, clamps, and attachments as required to properly support piping from the building structure.
- B. Metal Trapeze Pipe-Hanger Installation: Comply with MSS SP-69 and MSS SP-89. Arrange for grouping of parallel runs of horizontal piping, and support together on field-fabricated trapeze pipe hangers.
 - 1. Pipes of Various Sizes: Support together and space trapezes for smallest pipe size or install intermediate supports for smaller diameter pipes as specified for individual pipe hangers.
 - 2. Field fabricate from ASTM A 36/A 36M, carbon-steel shapes selected for loads being supported. Weld steel according to AWS D1.1/D1.1M.
- C. Metal Framing System Installation: Arrange for grouping of parallel runs of piping, and support together on field-assembled metal framing systems.
- D. Thermal-Hanger Shield Installation: Install in pipe hanger or shield for insulated piping.
- E. Fastener System Installation:
 - 1. Install powder-actuated fasteners for use in lightweight concrete or concrete slabs less than 4 inches thick in concrete after concrete is placed and completely cured. Use operators that are licensed by powder-actuated tool manufacturer. Install fasteners according to powder-actuated tool manufacturer's operating manual.
 - 2. Install mechanical-expansion anchors in concrete after concrete is placed and completely cured. Install fasteners according to manufacturer's written instructions.
- F. Pipe Stand Installation:
 - 1. Pipe Stand Types except Curb-Mounted Type: Assemble components and mount on smooth roof surface. Do not penetrate roof membrane.
- G. Pipe Positioning-System Installation: Install support devices to make rigid supply and waste piping connections to each plumbing fixture.
- H. Install hangers and supports complete with necessary attachments, inserts, bolts, rods, nuts, washers, and other accessories.
- I. Install hangers and supports to allow controlled thermal and seismic movement of piping systems, to permit freedom of movement between pipe anchors, and to facilitate action of expansion joints, expansion loops, expansion bends, and similar units.
- J. Install lateral bracing with pipe hangers and supports to prevent swaying.

- K. Install building attachments within concrete slabs or attach to structural steel. Install additional attachments at concentrated loads, including valves, flanges, and strainers, NPS 2-1/2 and larger and at changes in direction of piping. Install concrete inserts before concrete is placed; fasten inserts to forms and install reinforcing bars through openings at top of inserts.
- L. Load Distribution: Install hangers and supports so that piping live and dead loads and stresses from movement will not be transmitted to connected equipment.
- M. Pipe Slopes: Install hangers and supports to provide indicated pipe slopes and to not exceed maximum pipe deflections allowed by ASME B31.9 for building services piping.
- N. Insulated Piping:
 - 1. Attach clamps and spacers to piping.
 - a. Piping Operating above Ambient Air Temperature: Clamp may project through insulation.
 - b. Piping Operating below Ambient Air Temperature: Use thermal-hanger shield insert with clamp sized to match OD of insert.
 - c. Do not exceed pipe stress limits allowed by ASME B31.9 for building services piping.
 - 2. Install MSS SP-58, Type 39, protection saddles if insulation without vapor barrier is indicated. Fill interior voids with insulation that matches adjoining insulation.
 - a. Option: Thermal-hanger shield inserts may be used. Include steel weight-distribution plate for pipe NPS 4 and larger if pipe is installed on rollers.
 - 3. Install MSS SP-58, Type 40, protective shields on cold piping with vapor barrier. Shields shall span an arc of 180 degrees.
 - a. Option: Thermal-hanger shield inserts may be used. Include steel weight-distribution plate for pipe NPS 4 and larger if pipe is installed on rollers.
 - 4. Shield Dimensions for Pipe: Not less than the following:
 - a. NPS 1/4 to NPS 3-1/2: 12 inches long and 0.048 inch thick.
 - b. NPS 4: 12 inches long and 0.06 inchthick.
 - c. NPS 5 and NPS 6: 18 inches long and 0.06 inch thick.
 - d. NPS 8 to NPS 14: 24 inches long and 0.075 inch thick.
 - e. NPS 16 to NPS 24: 24 inches long and 0.105 inch thick.
 - 5. Pipes NPS 8 and Larger: Include wood or reinforced calcium-silicate-insulation inserts of length at least as long as protective shield.
 - 6. Thermal-Hanger Shields: Install with insulation same thickness as piping insulation.

3.2 METAL FABRICATIONS

- A. Cut, drill, and fit miscellaneous metal fabrications for trapeze pipe hangers equipment supports.
- B. Fit exposed connections together to form hairline joints. Field weld connections that cannot be shop welded because of shipping size limitations.
- C. Field Welding: Comply with AWS D1.1/D1.1M procedures for shielded, metal arc welding; appearance and quality of welds; and methods used in correcting welding work; and with the following:
 - 1. Use materials and methods that minimize distortion and develop strength and corrosion resistance of base metals.
 - 2. Obtain fusion without undercut or overlap.
 - 3. Remove welding flux immediately.
 - 4. Finish welds at exposed connections so no roughness shows after finishing and so contours of welded surfaces match adjacent contours.

3.3 ADJUSTING

- A. Hanger Adjustments: Adjust hangers to distribute loads equally on attachments and to achieve indicated slope of pipe.
- B. Trim excess length of continuous-thread hanger and support rods to 1-1/2 inches.

3.4 PAINTING

- A. Touchup: Cleaning and touchup painting of field welds, bolted connections, and abraded areas of shop paint on miscellaneous metal are specified in Section 099123 "Interior Painting."
- B. Galvanized Surfaces: Clean welds, bolted connections, and abraded areas and apply galvanizing-repair paint to comply with ASTM A 780.

3.5 HANGER AND SUPPORT SCHEDULE

- A. Specific hanger and support requirements are in Sections specifying piping systems and equipment.
- B. Comply with MSS SP-69 for pipe-hanger selections and applications that are not specified in piping system Sections.
- C. Use hangers and supports with galvanized metallic coatings for piping and equipment that will not have field-applied finish.
- D. Use nonmetallic coatings on attachments for electrolytic protection where attachments are in direct contact with copper tubing.

- E. Use carbon-steel metal trapeze pipe hangers and metal framing systems and attachments for general service applications.
- F. Use copper-plated pipe hangers and copper or stainless-steel attachments for copper piping and tubing.
- G. Use padded hangers for piping that is subject to scratching.
- H. Use thermal-hanger shield inserts for insulated piping and tubing.
- I. Horizontal-Piping Hangers and Supports: Unless otherwise indicated and except as specified in piping system Sections, install the following types:
 - 1. Adjustable, Steel Clevis Hangers (MSS Type 1): For suspension of noninsulated or insulated, stationary pipes NPS 1/2 to NPS 30.
 - 2. Yoke-Type Pipe Clamps (MSS Type 2): For suspension of up to 1050 deg F, pipes NPS 4 to NPS 24, requiring up to 4 inches of insulation.
 - 3. Carbon- or Alloy-Steel, Double-Bolt Pipe Clamps (MSS Type 3): For suspension of pipes NPS 3/4 to NPS 36, requiring clamp flexibility and up to 4 inches of insulation.
 - 4. Steel Pipe Clamps (MSS Type 4): For suspension of cold and hot pipes NPS 1/2 to NPS 24 if little or no insulation is required.
 - 5. Pipe Hangers (MSS Type 5): For suspension of pipes NPS 1/2 to NPS 4, to allow off-center closure for hanger installation before pipe erection.
 - 6. Adjustable, Swivel Split- or Solid-Ring Hangers (MSS Type 6): For suspension of noninsulated, stationary pipes NPS 3/4 to NPS 8.
 - 7. Adjustable, Steel Band Hangers (MSS Type 7): For suspension of noninsulated, stationary pipes NPS 1/2 to NPS 8.
 - 8. Adjustable Band Hangers (MSS Type 9): For suspension of noninsulated, stationary pipes NPS 1/2 to NPS 8.
 - 9. Adjustable, Swivel-Ring Band Hangers (MSS Type 10): For suspension of noninsulated, stationary pipes NPS 1/2 to NPS 8.
 - 10. Split Pipe Ring with or without Turnbuckle Hangers (MSS Type 11): For suspension of noninsulated, stationary pipes NPS 3/8 to NPS 8.
 - 11. Extension Hinged or Two-Bolt Split Pipe Clamps (MSS Type 12): For suspension of noninsulated, stationary pipes NPS 3/8 to NPS 3.
 - 12. U-Bolts (MSS Type 24): For support of heavy pipes NPS 1/2 to NPS 30.
 - 13. Clips (MSS Type 26): For support of insulated pipes not subject to expansion or contraction.
 - 14. Pipe Saddle Supports (MSS Type 36): For support of pipes NPS 4 to NPS 36, with steel-pipe base stanchion support and cast-iron floor flange or carbon-steel plate.
 - 15. Pipe Stanchion Saddles (MSS Type 37): For support of pipes NPS 4 to NPS 36, with steel-pipe base stanchion support and cast-iron floor flange or carbon-steel plate, and with U-bolt to retain pipe.
 - 16. Adjustable Pipe Saddle Supports (MSS Type 38): For stanchion-type support for pipes NPS 2-1/2 to NPS 36 if vertical adjustment is required, with steel-pipe base stanchion support and cast-iron floor flange.
 - 17. Single-Pipe Rolls (MSS Type 41): For suspension of pipes NPS 1 to NPS 30, from two rods if longitudinal movement caused by expansion and contraction might occur.

- Adjustable Roller Hangers (MSS Type 43): For suspension of pipes NPS 2-1/2 to NPS 24, from single rod if horizontal movement caused by expansion and contraction might occur.
- 19. Complete Pipe Rolls (MSS Type 44): For support of pipes NPS 2 to NPS 42 if longitudinal movement caused by expansion and contraction might occur but vertical adjustment is not necessary.
- 20. Pipe Roll and Plate Units (MSS Type 45): For support of pipes NPS 2 to NPS 24 if small horizontal movement caused by expansion and contraction might occur and vertical adjustment is not necessary.
- 21. Adjustable Pipe Roll and Base Units (MSS Type 46): For support of pipes NPS 2 to NPS 30 if vertical and lateral adjustment during installation might be required in addition to expansion and contraction.
- J. Vertical-Piping Clamps: Unless otherwise indicated and except as specified in piping system Sections, install the following types:
 - 1. Extension Pipe or Riser Clamps (MSS Type 8): For support of pipe risers NPS 3/4 to NPS 24.
 - 2. Carbon- or Alloy-Steel Riser Clamps (MSS Type 42): For support of pipe risers NPS 3/4 to NPS 24 if longer ends are required for riser clamps.
- K. Hanger-Rod Attachments: Unless otherwise indicated and except as specified in piping system Sections, install the following types:
 - 1. Steel Turnbuckles (MSS Type 13): For adjustment up to 6 inches for heavy loads.
- L. Building Attachments: Unless otherwise indicated and except as specified in piping system Sections, install the following types:
 - 1. Steel or Malleable Concrete Inserts (MSS Type 18): For upper attachment to suspend pipe hangers from concrete ceiling.
 - 2. Top-Beam C-Clamps (MSS Type 19): For use under roof installations with barjoist construction, to attach to top flange of structural shape.
 - 3. Side-Beam or Channel Clamps (MSS Type 20): For attaching to bottom flange of beams, channels, or angles.
 - 4. Center-Beam Clamps (MSS Type 21): For attaching to center of bottom flange of beams.
 - 5. Welded Beam Attachments (MSS Type 22): For attaching to bottom of beams if loads are considerable and rod sizes are large.
 - 6. C-Clamps (MSS Type 23): For structural shapes.
 - 7. Top-Beam Clamps (MSS Type 25): For top of beams if hanger rod is required tangent to flange edge.
 - 8. Side-Beam Clamps (MSS Type 27): For bottom of steel I-beams.
 - 9. Steel-Beam Clamps with Eye Nuts (MSS Type 28): For attaching to bottom of steel I-beams for heavy loads.
 - 10. Linked-Steel Clamps with Eye Nuts (MSS Type 29): For attaching to bottom of steel I-beams for heavy loads, with link extensions.
 - 11. Malleable-Beam Clamps with Extension Pieces (MSS Type 30): For attaching to structural steel.

- 12. Welded-Steel Brackets: For support of pipes from below or for suspending from above by using clip and rod. Use one of the following for indicated loads:
 - a. Light (MSS Type 31): 750 lb.
 - b. Medium (MSS Type 32): 1500 lb.
 - c. Heavy (MSS Type 33): 3000 lb.
- 13. Side-Beam Brackets (MSS Type 34): For sides of steel or wooden beams.
- 14. Plate Lugs (MSS Type 57): For attaching to steel beams if flexibility at beam is required.
- 15. Horizontal Travelers (MSS Type 58): For supporting piping systems subject to linear horizontal movement where headroom is limited.
- M. Saddles and Shields: Unless otherwise indicated and except as specified in piping system Sections, install the following types:
 - 1. Steel-Pipe-Covering Protection Saddles (MSS Type 39): To fill interior voids with insulation that matches adjoining insulation.
 - 2. Protection Shields (MSS Type 40): Of length recommended in writing by manufacturer to prevent crushing insulation.
 - 3. Thermal-Hanger Shield Inserts: For supporting insulated pipe.
- N. Spring Hangers and Supports: Unless otherwise indicated and except as specified in piping system Sections, install the following types:
 - 1. Constant Supports: For critical piping stress and if necessary to avoid transfer of stress from one support to another support, critical terminal, or connected equipment. Include auxiliary stops for erection, hydrostatic test, and load-adjustment capability. These supports include the following types:
 - a. Trapeze (MSS Type 56): Two vertical-type supports and one trapeze member.
- O. Comply with MSS SP-69 for trapeze pipe-hanger selections and applications that are not specified in piping system Sections.
- P. Comply with MFMA-103 for metal framing system selections and applications that are not specified in piping system Sections.
- Q. Use powder-actuated fasteners mechanical-expansion anchors instead of building attachments where required in concrete construction.
- R. Use pipe positioning systems in pipe spaces behind plumbing fixtures to support supply and waste piping for plumbing fixtures.

END OF SECTION 220529

SECTION 220548 - VIBRATION AND SEISMIC CONTROLS FOR PLUMBING PIPING AND EQUIPMENT

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. Section Includes:
 - 1. Restraint channel bracings.
 - 2. Restraint cables.
 - 3. Seismic-restraint accessories.
 - 4. Mechanical anchor bolts.
 - 5. Adhesive anchor bolts.
- B. Related Requirements:
 - 1. Section 230548 "Vibration and Seismic Controls for HVAC" for devices for HVAC equipment and systems.

1.3 DEFINITIONS

- A. IBC: International Building Code.
- B. ICC-ES: ICC-Evaluation Service.
- C. OSHPD: Office of Statewide Health Planning & Development (for the State of California).

1.4 ACTION SUBMITTALS

- A. Product Data: For each type of product.
 - 1. Include rated load, rated deflection, and overload capacity for each vibration isolation device.
 - 2. Illustrate and indicate style, material, strength, fastening provision, and finish for each type and size of vibration isolation device and seismic-restraint component required.

- a. Tabulate types and sizes of seismic restraints, complete with report numbers and rated strength in tension and shear as evaluated by an evaluation service member of ICC-ES.
- b. Annotate to indicate application of each product submitted and compliance with requirements.
- 3. Interlocking Snubbers: Include ratings for horizontal, vertical, and combined loads.
- B. Shop Drawings:
 - 1. Detail fabrication and assembly of equipment bases. Detail fabrication including anchorages and attachments to structure and to supported equipment.
- C. Delegated-Design Submittal: For each vibration isolation and seismic-restraint device.
 - 1. Seismic-Restraint Details:
 - a. Design Analysis: To support selection and arrangement of seismic restraints. Include calculations of combined tensile and shear loads.
 - b. Details: Indicate fabrication and arrangement. Detail attachments of restraints to the restrained items and to the structure. Show attachment locations, methods, and spacings. Identify components, list their strengths, and indicate directions and values of forces transmitted to the structure during seismic events. Indicate association with vibration isolation devices.
 - c. Coordinate seismic-restraint and vibration isolation details with windrestraint details required for equipment mounted outdoors. Comply with requirements in other Sections for equipment mounted outdoors.
 - d. Preapproval and Evaluation Documentation: By an evaluation service member of ICC-ES, showing maximum ratings of restraint items and the basis for approval (tests or calculations).

1.5 INFORMATIONAL SUBMITTALS

- A. Coordination Drawings: Show coordination of vibration isolation device installation and seismic bracing for plumbing piping and equipment with other systems and equipment in the vicinity, including other supports and restraints, if any.
- B. Welding certificates.
- C. Field quality-control reports.

1.6 QUALITY ASSURANCE

A. Testing Agency Qualifications: An independent agency, with the experience and capability to conduct the testing indicated, that is an NRTL as defined by OSHA in 29 CFR 1910.7 and that is acceptable to authorities having jurisdiction.

- B. Comply with seismic-restraint requirements in the IBC unless requirements in this Section are more stringent.
- C. Welding Qualifications: Qualify procedures and personnel according to AWS D1.1/D1.1M, "Structural Welding Code Steel."
- D. Seismic-restraint devices shall have horizontal and vertical load testing and analysis and shall bear anchorage preapproval OPA number from OSHPD (pre-approved OPM categories), preapproval by ICC-ES, or preapproval by another agency acceptable to authorities having jurisdiction, showing maximum seismic-restraint ratings. Ratings based on independent testing are preferred to ratings based on calculations. If preapproved ratings are unavailable, submittals based on independent testing are preferred. Calculations (including combining shear and tensile loads) to support seismic-restraint designs must be signed and sealed by a qualified professional engineer.

PART 2 - PRODUCTS

2.1 PERFORMANCE REQUIREMENTS

- A. Seismic-Restraint Loading:
 - 1. To be determined during Delegated Design .

2.2 RESTRAINT CHANNEL BRACINGS

- A. Manufacturers: Subject to compliance with requirements, provide products by the following:
- B. Basis-of-Design Product: Subject to compliance with requirements, provide or comparable product by one of the following:
 - 1. Cooper B-Line, Inc.
 - 2. Hilti, Inc.
 - 3. Mason Industries, Inc.
 - 4. Unistrut.
- C. Description: MFMA-4, shop- or field-fabricated bracing assembly made of slotted steel channels with accessories for attachment to braced component at one end and to building structure at the other end and other matching components and with corrosion-resistant coating; rated in tension, compression, and torsion forces.

2.3 RESTRAINT CABLES

A. Manufacturers: Subject to compliance with requirements, provide products by the following:

- B. Basis-of-Design Product: Subject to compliance with requirements, provide or comparable product by one of the following:
 - 1. Kinetics Noise Control, Inc.
 - 2. Loos & Co., Inc.
 - 3. Vibration Mountings & Controls, Inc.
- C. Restraint Cables: ASTM A 492 stainless-steel cables. End connections made of steel assemblies with thimbles, brackets, swivel, and bolts designed for restraining cable service; with a minimum of two clamping bolts for cable engagement.

2.4 SEISMIC-RESTRAINT ACCESSORIES

- A. Manufacturers: Subject to compliance with requirements, provide products by the following:
- B. Basis-of-Design Product: Subject to compliance with requirements, provide or comparable product by one of the following:
 - 1. Cooper B-Line, Inc.
 - 2. Kinetics Noise Control, Inc.
 - 3. Mason Industries, Inc.
 - 4. TOLCO.
- C. Hanger-Rod Stiffener: Reinforcing steel angle clamped to hanger rod.
- D. Hinged and Swivel Brace Attachments: Multifunctional steel connectors for attaching hangers to rigid channel bracings and restraint cables.
- E. Bushings for Floor-Mounted Equipment Anchor Bolts: Neoprene bushings designed for rigid equipment mountings, and matched to type and size of anchor bolts and studs.
- F. Bushing Assemblies for Wall-Mounted Equipment Anchorage: Assemblies of neoprene elements and steel sleeves designed for rigid equipment mountings, and matched to type and size of attachment devices used.
- G. Resilient Isolation Washers and Bushings: One-piece, molded, oil- and waterresistant neoprene, with a flat washer face.

2.5 MECHANICAL ANCHOR BOLTS

- A. Manufacturers: Subject to compliance with requirements, provide products by the following:
- B. Basis-of-Design Product: Subject to compliance with requirements, provide or comparable product by one of the following:
 - 1. Cooper B-Line, Inc.
 - 2. Hilti, Inc.
 - 3. Kinetics Noise Control, Inc.

VIBRATION AND SEISMIC CONTROLS FOR PLUMBING PIPING AND EQUIPMENTSection 220548 - 4 of 7 17-0475 - Cuningham Group Architecture, Inc.

- 4. Mason Industries, Inc.
- Mechanical Anchor Bolts: Drilled-in and stud-wedge or female-wedge type in zinccoated steel for interior applications and stainless steel for exterior applications. Select anchor bolts with strength required for anchor and as tested according to ASTM E 488.

PART 3 - EXECUTION

3.1 EXAMINATION

- A. Examine areas and equipment to receive vibration isolation and seismic-control devices for compliance with requirements for installation tolerances and other conditions affecting performance of the Work.
- B. Examine roughing-in of reinforcement and cast-in-place anchors to verify actual locations before installation.
- C. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 APPLICATIONS

- A. Multiple Pipe Supports: Secure pipes to trapeze member with clamps approved for application by an evaluation service member of ICC-ES.
- B. Hanger-Rod Stiffeners: Install hanger-rod stiffeners where indicated or scheduled on Drawings to receive them and where required to prevent buckling of hanger rods due to seismic forces.
- C. Strength of Support and Seismic-Restraint Assemblies: Where not indicated, select sizes of components so strength is adequate to carry present and future static and seismic loads within specified loading limits.

3.3 VIBRATION CONTROL AND SEISMIC-RESTRAINT DEVICE INSTALLATION

- A. Coordinate the location of embedded connection hardware with supported equipment attachment and mounting points and with requirements for concrete reinforcement and formwork specified in Section 033000 "Cast-in-Place Concrete."
- B. Installation of vibration isolators must not cause any change of position of equipment, piping, or ductwork resulting in stresses or misalignment.
- C. Comply with requirements in Section 077200 "Roof Accessories" for installation of roof curbs, equipment supports, and roof penetrations.
- D. Piping Restraints:
 - 1. Comply with requirements in MSS SP-127.

- 2. Space lateral supports a maximum of 40 feet o.c., and longitudinal supports a maximum of 80 feet o.c.
- 3. Brace a change of direction longer than 12 feet.
- E. Install cables so they do not bend across edges of adjacent equipment or building structure.
- F. Install seismic-restraint devices using methods approved by an evaluation service member of ICC-ES that provides required submittals for component.
- G. Install bushing assemblies for anchor bolts for floor-mounted equipment, arranged to provide resilient media between anchor bolt and mounting hole in concrete base.
- H. Install bushing assemblies for mounting bolts for wall-mounted equipment, arranged to provide resilient media where equipment or equipment-mounting channels are attached to wall.
- I. Attachment to Structure: If specific attachment is not indicated, anchor bracing to structure at flanges of beams, at upper truss chords of bar joists, or at concrete members.
- J. Drilled-in Anchors:
 - 1. Identify position of reinforcing steel and other embedded items prior to drilling holes for anchors. Do not damage existing reinforcing or embedded items during coring or drilling. Notify the structural engineer if reinforcing steel or other embedded items are encountered during drilling. Locate and avoid prestressed tendons, electrical and telecommunications conduit, and gas lines.
 - 2. Do not drill holes in concrete or masonry until concrete, mortar, or grout has achieved full design strength.
 - 3. Wedge Anchors: Protect threads from damage during anchor installation. Heavy-duty sleeve anchors shall be installed with sleeve fully engaged in the structural element to which anchor is to be fastened.
 - 4. Adhesive Anchors: Clean holes to remove loose material and drilling dust prior to installation of adhesive. Place adhesive in holes proceeding from the bottom of the hole and progressing toward the surface in such a manner as to avoid introduction of air pockets in the adhesive.
 - 5. Set anchors to manufacturer's recommended torque, using a torque wrench.
 - 6. Install zinc-coated steel anchors for interior and stainless-steel anchors for exterior applications.

3.4 ACCOMMODATION OF DIFFERENTIAL SEISMIC MOTION

A. Install flexible connections in piping where they cross seismic joints, where adjacent sections or branches are supported by different structural elements, and where the connections terminate with connection to equipment that is anchored to a different structural element from the one supporting the connections as they approach equipment. Comply with requirements in Section 221116 "Domestic Water Piping" for piping flexible connections.

3.5 FIELD QUALITY CONTROL

- A. Perform tests and inspections.
- B. Tests and Inspections:
 - 1. Provide evidence of recent calibration of test equipment by a testing agency acceptable to authorities having jurisdiction.
 - 2. Schedule test with Owner, through Architect, before connecting anchorage device to restrained component (unless postconnection testing has been approved), and with at least seven days' advance notice.
 - 3. Obtain Architect's approval before transmitting test loads to structure. Provide temporary load-spreading members.
 - 4. Test at least four of each type and size of installed anchors and fasteners selected by Architect.
 - 5. Test to 90 percent of rated proof load of device.
 - 6. Measure isolator restraint clearance.
 - 7. Measure isolator deflection.
 - 8. Verify snubber minimum clearances.
- C. Remove and replace malfunctioning units and retest as specified above.
- D. Prepare test and inspection reports.

3.6 ADJUSTING

- A. Adjust isolators after piping system is at operating weight.
- B. Adjust limit stops on restrained-spring isolators to mount equipment at normal operating height. After equipment installation is complete, adjust limit stops so they are out of contact during normal operation.

END OF SECTION 220548

THIS PAGE INTENTIONALLY LEFT BLANK

SECTION 220553 - IDENTIFICATION FOR PLUMBING PIPING AND EQUIPMENT

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. Section Includes:
 - 1. Equipment labels.
 - 2. Pipe labels.
 - 3. Valve tags.
 - 4. Warning tags.

1.3 ACTION SUBMITTALS

- A. Product Data: For each type of product indicated.
- B. Samples: For color, letter style, and graphic representation required for each identification material and device.
- C. Equipment Label Schedule: Include a listing of all equipment to be labeled with the proposed content for each label.
- D. Valve numbering scheme.
- E. Valve Schedules: For each piping system to include in maintenance manuals.

1.4 COORDINATION

- A. Coordinate installation of identifying devices with completion of covering and painting of surfaces where devices are to be applied.
- B. Coordinate installation of identifying devices with locations of access panels and doors.
- C. Install identifying devices before installing acoustical ceilings and similar concealment.

PART 2 - PRODUCTS

2.1 EQUIPMENT LABELS

- A. Plastic Labels for Equipment:
 - 1. Material and Thickness: Multilayer, multicolor, plastic labels for mechanical engraving, 1/8 inch thick, and having predrilled holes for attachment hardware.
 - 2. Letter Color: White.
 - 3. Background Color: Black.
 - 4. Maximum Temperature: Able to withstand temperatures up to 160 deg F.
 - 5. Minimum Label Size: Length and width vary for required label content, but not less than 2-1/2 by 3/4 inch.
 - 6. Minimum Letter Size: 1/4 inch for name of units if viewing distance is less than 24 inches, 1/2 inch for viewing distances up to 72 inches, and proportionately larger lettering for greater viewing distances. Include secondary lettering two-thirds to three-fourths the size of principal lettering.
 - 7. Fasteners: Stainless-steel self-tapping screws.
 - 8. Adhesive: Contact-type permanent adhesive, compatible with label and with substrate.
- B. Label Content: Include equipment's Drawing designation or unique equipment number, Drawing numbers where equipment is indicated (plans, details, and schedules), plus the Specification Section number and title where equipment is specified.
- C. Equipment Label Schedule: For each item of equipment to be labeled, on 8-1/2-by-11-inch bond paper. Tabulate equipment identification number and identify Drawing numbers where equipment is indicated (plans, details, and schedules), plus the Specification Section number and title where equipment is specified. Equipment schedule shall be included in operation and maintenance data.

2.2 PIPE LABELS

- A. General Requirements for Manufactured Pipe Labels: Preprinted, color-coded, with lettering indicating service, and showing flow direction.
- B. Pretensioned Pipe Labels: Precoiled, semirigid plastic formed to cover full circumference of pipe and to attach to pipe without fasteners or adhesive.
- C. Pipe Label Contents: Include identification of piping service using same designations or abbreviations as used on Drawings, pipe size, and an arrow indicating flow direction.
 - 1. Flow-Direction Arrows: Integral with piping system service lettering to accommodate both directions, or as separate unit on each pipe label to indicate flow direction.
 - 2. Lettering Size: At least 1-1/2 incheshigh.

2.3 VALVE TAGS

- A. Valve Tags: Stamped or engraved with 1/4-inch letters for piping system abbreviation and 1/2-inch numbers.
 - 1. Tag Material: Brass, 0.032-inch minimum thickness, and having predrilled or stamped holes for attachment hardware.
 - 2. Fasteners: Brass wire-link or beaded chain; or S-hook .
- B. Valve Schedules: For each piping system, on 8-1/2-by-11-inch bond paper. Tabulate valve number, piping system, system abbreviation (as shown on valve tag), location of valve (room or space), normal-operating position (open, closed, or modulating), and variations for identification. Mark valves for emergency shutoff and similar special uses.
 - 1. Valve-tag schedule shall be included in operation and maintenance data.

2.4 WARNING TAGS

- A. Warning Tags: Preprinted or partially preprinted, accident-prevention tags, of plasticized card stock with matte finish suitable for writing.
 - 1. Size: 3 by 5-1/4 inches minimum.
 - 2. Fasteners: Brass grommet and wire.
 - 3. Nomenclature: Large-size primary caption such as "DANGER," "CAUTION," or "DO NOT OPERATE."
 - 4. Color: Yellow background with black lettering.

PART 3 - EXECUTION

3.1 PREPARATION

A. Clean piping and equipment surfaces of substances that could impair bond of identification devices, including dirt, oil, grease, release agents, and incompatible primers, paints, and encapsulants.

3.2 EQUIPMENT LABEL INSTALLATION

- A. Install or permanently fasten labels on each major item of mechanical equipment.
- B. Locate equipment labels where accessible and visible.

3.3 PIPE LABEL INSTALLATION

A. Piping Color-Coding: Painting of piping is specified in Section 099123 "Interior Painting."

- B. Stenciled Pipe Label Option: Stenciled labels may be provided instead of manufactured pipe labels, at Installer's option. Install stenciled pipe labels with painted, color-coded bands or rectangles, complying with ASME A13.1, on each piping system.
 - 1. Identification Paint: Use for contrasting background.
 - 2. Stencil Paint: Use for pipe marking.
- C. Locate pipe labels where piping is exposed or above accessible ceilings in finished spaces; machine rooms; accessible maintenance spaces such as shafts, tunnels, and plenums; and exterior exposed locations as follows:
 - 1. Near each valve and control device.
 - 2. Near each branch connection, excluding short takeoffs for fixtures and terminal units. Where flow pattern is not obvious, mark each pipe at branch.
 - 3. Near penetrations through walls, floors, ceilings, and inaccessible enclosures.
 - 4. At access doors, manholes, and similar access points that permit view of concealed piping.
 - 5. Near major equipment items and other points of origination and termination.
 - 6. Spaced at maximum intervals of 50 feet along each run. Reduce intervals to 25 feet in areas of congested piping and equipment.
 - 7. On piping above removable acoustical ceilings. Omit intermediately spaced labels.
- D. Pipe Label Color Schedule:
 - 1. Domestic Water Piping:
 - a. Background Color: Yellow.
 - b. Letter Color: Black.

3.4 VALVE-TAG INSTALLATION

- A. Install tags on valves and control devices in piping systems, except check valves; valves within factory-fabricated equipment units; shutoff valves; faucets; convenience and lawn-watering hose connections; and similar roughing-in connections of end-use fixtures and units. List tagged valves in a valve schedule.
- B. Valve-Tag Application Schedule: Tag valves according to size, shape, and color scheme and with captions similar to those indicated in the following subparagraphs:
 - 1. Valve-Tag Size and Shape:
 - a. Cold Water: 1-1/2 inches, round .
 - 2. Valve-Tag Color:
 - a. Cold Water: Natural.
 - 3. Letter Color:

a. Cold Water: Black.

3.5 WARNING-TAG INSTALLATION

A. Write required message on, and attach warning tags to, equipment and other items where required.

END OF SECTION 220553

THIS PAGE INTENTIONALLY LEFT BLANK

SECTION 221116 - DOMESTIC WATER PIPING

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. Section Includes:
 - 1. Under-building-slab and aboveground domestic water pipes, tubes, and fittings inside buildings.

PART 2 - PRODUCTS

2.1 PIPING MATERIALS

- A. Comply with requirements in "Piping Schedule" Article for applications of pipe, tube, fitting materials, and joining methods for specific services, service locations, and pipe sizes.
- B. Potable-water piping and components shall comply with NSF 14 and NSF 61. Plastic piping components shall be marked with "NSF-pw."

2.2 COPPER TUBE AND FITTINGS

- A. Hard Copper Tube: ASTM B 88, Type L water tube, drawn temper.
- B. Cast-Copper, Solder-Joint Fittings: ASME B16.18, pressure fittings.
- C. Wrought-Copper, Solder-Joint Fittings: ASME B16.22, wrought-copper pressure fittings.
- D. Bronze Flanges: ASME B16.24, Class 150, with solder-joint ends.
- E. Copper Unions:
 - 1. MSS SP-123.
 - 2. Cast-copper-alloy, hexagonal-stock body.
 - 3. Ball-and-socket, metal-to-metal seating surfaces.
 - 4. Solder-joint or threaded ends.

2.3 PIPING JOINING MATERIALS

- A. Pipe-Flange Gasket Materials:
 - 1. AWWA C110/A21.10, rubber, flat face, 1/8 inch thick or ASME B16.21, nonmetallic and asbestos free unless otherwise indicated.
 - 2. Full-face or ring type unless otherwise indicated.
- B. Metal, Pipe-Flange Bolts and Nuts: ASME B18.2.1, carbon steel unless otherwise indicated.
- C. Solder Filler Metals: ASTM B 32, lead-free alloys.
- D. Flux: ASTM B 813, water flushable.
- E. Brazing Filler Metals: AWS A5.8/A5.8M, BCuP Series, copper-phosphorus alloys for general-duty brazing unless otherwise indicated.

2.4 TRANSITION FITTINGS

- A. General Requirements:
 - 1. Same size as pipes to be joined.
 - 2. Pressure rating at least equal to pipes to be joined.
 - 3. End connections compatible with pipes to be joined.
- B. Fitting-Type Transition Couplings: Manufactured piping coupling or specified piping system fitting.
- C. Sleeve-Type Transition Coupling: AWWA C219.
 - 1. Manufacturers: Subject to compliance with requirements, provide products by the following:
 - 2. Basis-of-Design Product: Subject to compliance with requirements, provide or comparable product by one of the following:
 - a. Cascade Waterworks Manufacturing.
 - b. Dresser, Inc.; Piping Specialties Products.
 - c. Ford Meter Box Company, Inc. (The).
 - d. JCM Industries.
 - e. Romac Industries, Inc.
 - f. Smith-Blair, Inc.; a Sensus company.
 - g. Viking Johnson.

2.5 DIELECTRIC FITTINGS

A. General Requirements: Assembly of copper alloy and ferrous materials with separating nonconductive insulating material. Include end connections compatible with pipes to be joined.

- B. Dielectric Unions:
 - 1. Manufacturers: Subject to compliance with requirements, provide products by the following:
 - 2. Basis-of-Design Product: Subject to compliance with requirements, provide or comparable product by one of the following:
 - a. Capitol Manufacturing Company; member of the Phoenix Forge Group.
 - b. Central Plastics Company.
 - c. Hart Industries International, Inc.
 - d. Jomar International.
 - e. Matco-Norca.
 - f. McDonald, A. Y. Mfg. Co.
 - g. Watts; a division of Watts Water Technologies, Inc.
 - h. Wilkins; a Zurn company.
 - 3. Standard: ASSE 1079.
 - 4. Pressure Rating: 125 psig minimum at 180 deg F.
 - 5. End Connections: Solder-joint copper alloy and threaded ferrous.
- C. Dielectric Flanges:
 - 1. Manufacturers: Subject to compliance with requirements, provide products by the following:
 - 2. Basis-of-Design Product: Subject to compliance with requirements, provide or comparable product by one of the following:
 - a. Capitol Manufacturing Company; member of the Phoenix Forge Group.
 - b. Central Plastics Company.
 - c. Matco-Norca.
 - d. Watts; a division of Watts Water Technologies, Inc.
 - e. Wilkins; a Zurn company.
 - 3. Standard: ASSE 1079.
 - 4. Factory-fabricated, bolted, companion-flange assembly.
 - 5. Pressure Rating: 125 psig minimum at 180 deg F.
 - 6. End Connections: Solder-joint copper alloy and threaded ferrous; threaded solder-joint copper alloy and threaded ferrous.
- D. Dielectric-Flange Insulating Kits:
 - 1. Manufacturers: Subject to compliance with requirements, provide products by the following:
 - 2. Basis-of-Design Product: Subject to compliance with requirements, provide or comparable product by one of the following:
 - a. Advance Products & Systems, Inc.
 - b. Calpico, Inc.
 - c. Central Plastics Company.
 - d. Pipeline Seal and Insulator, Inc.

- 3. Nonconducting materials for field assembly of companion flanges.
- 4. Pressure Rating: 150 psig.
- 5. Gasket: Neoprene or phenolic.
- 6. Bolt Sleeves: Phenolic or polyethylene.
- 7. Washers: Phenolic with steel backing washers.
- E. Dielectric Nipples:
 - 1. Manufacturers: Subject to compliance with requirements, provide products by the following:
 - 2. Basis-of-Design Product: Subject to compliance with requirements, provide or comparable product by one of the following:
 - a. Elster Perfection Corporation.
 - b. Grinnell Mechanical Products; Tyco Fire Products LP.
 - c. Matco-Norca.
 - d. Precision Plumbing Products, Inc.
 - e. Victaulic Company.
 - 3. Standard: IAPMO PS 66.
 - 4. Electroplated steel nipple complying with ASTM F 1545.
 - 5. Pressure Rating and Temperature: 300 psig at 225 deg F.
 - 6. End Connections: Male threaded or grooved.
 - 7. Lining: Inert and noncorrosive, propylene.

PART 3 - EXECUTION

3.1 PIPING INSTALLATION

- A. Drawing plans, schematics, and diagrams indicate general location and arrangement of domestic water piping. Indicated locations and arrangements are used to size pipe and calculate friction loss, expansion, and other design considerations. Install piping as indicated unless deviations to layout are approved on coordination drawings.
- B. Install copper tubing under building slab according to CDA's "Copper Tube Handbook."
- C. Install shutoff valve, hose-end drain valve, strainer, pressure gage, and test tee with valve inside the building at each domestic water-service entrance. Comply with requirements for pressure gages in Section 220519 "Meters and Gages for Plumbing Piping" and with requirements for drain valves and strainers in Section 221119 "Domestic Water Piping Specialties."
- D. Install shutoff valve immediately upstream of each dielectric fitting.
- E. Install water-pressure-reducing valves downstream from shutoff valves. Comply with requirements for pressure-reducing valves in Section 221119 "Domestic Water Piping Specialties."

- F. Install domestic water piping level with 0.25 percent slope downward toward drainand plumb.
- G. Install piping concealed from view and protected from physical contact by building occupants unless otherwise indicated and except in equipment rooms and service areas.
- H. Install piping indicated to be exposed and piping in equipment rooms and service areas at right angles or parallel to building walls. Diagonal runs are prohibited unless specifically indicated otherwise.
- I. Install piping above accessible ceilings to allow sufficient space for ceiling panel removal, and coordinate with other services occupying that space.
- J. Install piping to permit valve servicing.
- K. Install nipples, unions, special fittings, and valves with pressure ratings the same as or higher than the system pressure rating used in applications below unless otherwise indicated.
- L. Install piping free of sags and bends.
- M. Install fittings for changes in direction and branch connections.
- N. Install unions in copper tubing at final connection to each piece of equipment, machine, and specialty.
- O. Install sleeve seals for piping penetrations of concrete walls and slabs. Comply with requirements for sleeve seals specified in Section 220517 "Sleeves and Sleeve Seals for Plumbing Piping."

3.2 JOINT CONSTRUCTION

- A. Ream ends of pipes and tubes and remove burrs. Bevel plain ends of steel pipe.
- B. Remove scale, slag, dirt, and debris from inside and outside of pipes, tubes, and fittings before assembly.
- C. Brazed Joints for Copper Tubing: Comply with CDA's "Copper Tube Handbook," "Brazed Joints" chapter.
- D. Soldered Joints for Copper Tubing: Apply ASTM B 813, water-flushable flux to end of tube. Join copper tube and fittings according to ASTM B 828 or CDA's "Copper Tube Handbook."
- E. Flanged Joints: Select appropriate asbestos-free, nonmetallic gasket material in size, type, and thickness suitable for domestic water service. Join flanges with gasket and bolts according to ASME B31.9.
- F. Joints for Dissimilar-Material Piping: Make joints using adapters compatible with materials of both piping systems.

3.3 TRANSITION FITTING INSTALLATION

- A. Install transition couplings at joints of dissimilar piping.
- B. Transition Fittings in Underground Domestic Water Piping:
 - 1. Fittings for NPS 1-1/2 and Smaller: Fitting-type coupling.
 - 2. Fittings for NPS 2 and Larger: Sleeve-type coupling.

3.4 DIELECTRIC FITTING INSTALLATION

- A. Install dielectric fittings in piping at connections of dissimilar metal piping and tubing.
- B. Dielectric Fittings for NPS 2 and Smaller: Use dielectric couplings or nipples nipples unions.
- C. Dielectric Fittings for NPS 2-1/2 to NPS 4: Use dielectric flanges flange kits nipples.
- D. Dielectric Fittings for NPS 5 and Larger: Use dielectric flange kits.

3.5 HANGER AND SUPPORT INSTALLATION

- A. Comply with requirements for pipe hanger, support products, and installation in Section 220529 "Hangers and Supports for Plumbing Piping and Equipment."
 - 1. Vertical Piping: MSS Type 8 or 42, clamps.
 - 2. Individual, Straight, Horizontal Piping Runs:
 - a. 100 Feet and Less: MSS Type 1, adjustable, steel clevis hangers.
 - b. Longer Than 100 Feet: MSS Type 43, adjustable roller hangers.
 - c. Longer Than 100 Feet if Indicated: MSS Type 49, spring cushion rolls.
 - 3. Multiple, Straight, Horizontal Piping Runs 100 Feet or Longer: MSS Type 44, pipe rolls. Support pipe rolls on trapeze.
 - 4. Base of Vertical Piping: MSS Type 52, spring hangers.
- B. Support vertical piping and tubing at base and at each floor.
- C. Rod diameter may be reduced one size for double-rod hangers, to a minimum of 3/8 inch.
- D. Install hangers for copper tubing with the following maximum horizontal spacing and minimum rod diameters:
 - 1. NPS 3/4 and Smaller: 60 inches with 3/8-inch rod.
 - 2. NPS 1 and NPS 1-1/4: 72 inches with 3/8-inch rod.
 - 3. NPS 1-1/2 and NPS 2: 96 inches with 3/8-inch rod.
 - 4. NPS 2-1/2: 108 inches with 1/2-inch rod.
- E. Install supports for vertical copper tubing every 10 feet.

- F. Install hangers for steel piping with the following maximum horizontal spacing and minimum rod diameters:
 - 1. NPS 1-1/4 and Smaller: 84 inches with 3/8-inch rod.
 - 2. NPS 1-1/2: 108 inches with 3/8-inch rod.
 - 3. NPS 2: 10 feet with 3/8-inch rod.
 - 4. NPS 2-1/2: 11 feet with 1/2-inch rod.
- G. Support piping and tubing not listed in this article according to MSS SP-69 and manufacturer's written instructions.

3.6 CONNECTIONS

- A. Drawings indicate general arrangement of piping, fittings, and specialties.
- B. When installing piping adjacent to equipment and machines, allow space for service and maintenance.
- C. Connect domestic water piping to exterior water-service piping. Use transition fitting to join dissimilar piping materials.
- D. Connect domestic water piping to water-service piping with shutoff valve; extend and connect to the following:
 - 1. Equipment: Cold- and hot-water-supply piping as indicated, but not smaller than equipment connections. Provide shutoff valve and union for each connection. Use flanges instead of unions for NPS 2-1/2 and larger.

3.7 IDENTIFICATION

- A. Identify system components. Comply with requirements for identification materials and installation in Section 220553 "Identification for Plumbing Piping and Equipment."
- B. Label pressure piping with system operating pressure.

3.8 FIELD QUALITY CONTROL

- A. Perform the following tests and inspections:
 - 1. Piping Inspections:
 - a. Do not enclose, cover, or put piping into operation until it has been inspected and approved by authorities having jurisdiction.
 - b. During installation, notify authorities having jurisdiction at least one day before inspection must be made. Perform tests specified below in presence of authorities having jurisdiction:

- 1) Roughing-in Inspection: Arrange for inspection of piping before concealing or closing in after roughing in and before setting fixtures.
- 2) Final Inspection: Arrange for authorities having jurisdiction to observe tests specified in "Piping Tests" Subparagraph below and to ensure compliance with requirements.
- c. Reinspection: If authorities having jurisdiction find that piping will not pass tests or inspections, make required corrections and arrange for reinspection.
- d. Reports: Prepare inspection reports and have them signed by authorities having jurisdiction.
- 2. Piping Tests:
 - a. Fill domestic water piping. Check components to determine that they are not air bound and that piping is full of water.
 - b. Test for leaks and defects in new piping and parts of existing piping that have been altered, extended, or repaired. If testing is performed in segments, submit a separate report for each test, complete with diagram of portion of piping tested.
 - c. Leave new, altered, extended, or replaced domestic water piping uncovered and unconcealed until it has been tested and approved. Expose work that was covered or concealed before it was tested.
 - Cap and subject piping to static water pressure of 50 psig above operating pressure, without exceeding pressure rating of piping system materials.
 Isolate test source and allow it to stand for four hours. Leaks and loss in test pressure constitute defects that must be repaired.
 - e. Repair leaks and defects with new materials, and retest piping or portion thereof until satisfactory results are obtained.
 - f. Prepare reports for tests and for corrective action required.
- B. Domestic water piping will be considered defective if it does not pass tests and inspections.
- C. Prepare test and inspection reports.

3.9 ADJUSTING

- A. Perform the following adjustments before operation:
 - 1. Close drain valves, hydrants, and hose bibbs.
 - 2. Open shutoff valves to fully open position.
 - 3. Open throttling valves to proper setting.
 - 4. Remove plugs used during testing of piping and for temporary sealing of piping during installation.
 - 5. Remove and clean strainer screens. Close drain valves and replace drain plugs.
 - 6. Remove filter cartridges from housings and verify that cartridges are as specified for application where used and are clean and ready for use.

7. Check plumbing specialties and verify proper settings, adjustments, and operation.

3.10 CLEANING

- A. Clean and disinfect potable domestic water piping as follows:
 - 1. Purge new piping and parts of existing piping that have been altered, extended, or repaired before using.
 - 2. Use purging and disinfecting procedures prescribed by authorities having jurisdiction; if methods are not prescribed, use procedures described in either AWWA C651 or AWWA C652 or follow procedures described below:
 - a. Flush piping system with clean, potable water until dirty water does not appear at outlets.
 - b. Fill and isolate system according to either of the following:
 - Fill system or part thereof with water/chlorine solution with at least 50 ppm of chlorine. Isolate with valves and allow to stand for 24 hours.
 - 2) Fill system or part thereof with water/chlorine solution with at least 200 ppm of chlorine. Isolate and allow to stand for three hours.
 - c. Flush system with clean, potable water until no chlorine is in water coming from system after the standing time.
 - d. Repeat procedures if biological examination shows contamination.
 - e. Submit water samples in sterile bottles to authorities having jurisdiction.
- B. Prepare and submit reports of purging and disinfecting activities. Include copies of water-sample approvals from authorities having jurisdiction.
- C. Clean interior of domestic water piping system. Remove dirt and debris as work progresses.

3.11 PIPING SCHEDULE

- A. Transition and special fittings with pressure ratings at least equal to piping rating may be used in applications below unless otherwise indicated.
- B. Flanges and unions may be used for aboveground piping joints unless otherwise indicated.
- C. Fitting Option: Extruded-tee connections and brazed joints may be used on aboveground copper tubing.
- D. Aboveground domestic water piping, NPS 2 and smaller, shall be the following:
 - 1. Hard copper tube, ASTM B 88, Type L; cast- wrought-copper, solder-joint fittings; and soldered joints.

- E. Aboveground domestic water piping, NPS 2-1/2 to NPS 4, shall be the following:
 - 1. Hard copper tube, ASTM B 88, Type L; wrought-copper, solder-joint fittings; and soldered joints.

3.12 VALVE SCHEDULE

- A. Drawings indicate valve types to be used. Where specific valve types are not indicated, the following requirements apply:
 - 1. Shutoff Duty: Use ball or gate valves for piping NPS 2 and smaller. Use butterfly, ball, or gate valves with flanged ends for piping NPS 2-1/2 and larger.
 - 2. Throttling Duty: Use ball or globe valves for piping NPS 2 and smaller. Use butterfly or ball valves with flanged ends for piping NPS 2-1/2 and larger.
 - 3. Drain Duty: Hose-end drain valves.
- B. Use check valves to maintain correct direction of domestic water flow to and from equipment.

END OF SECTION 221116
SECTION 221119 - DOMESTIC WATER PIPING SPECIALTIES

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. Section Includes:
 - 1. Backflow preventers.
 - 2. Hose bibbs.
 - 3. Drain valves.
 - 4. Air vents.
 - 5. Flexible connectors.

1.3 ACTION SUBMITTALS

A. Product Data: For each type of product.

1.4 CLOSEOUT SUBMITTALS

A. Operation and Maintenance Data: For domestic water piping specialties to include in emergency, operation, and maintenance manuals.

PART 2 - PRODUCTS

2.1 GENERAL REQUIREMENTS FOR PIPING SPECIALTIES

A. Potable-water piping and components shall comply with NSF 61 and NSF 14.

2.2 PERFORMANCE REQUIREMENTS

A. Minimum Working Pressure for Domestic Water Piping Specialties: 125 psig unless otherwise indicated.

2.3 BACKFLOW PREVENTERS

A. Reduced-Pressure-Principle Backflow Preventers :

- 1. Manufacturers: Subject to compliance with requirements, provide products by the following:
- 2. Basis-of-Design Product: Subject to compliance with requirements, provide or comparable product by one of the following:
 - a. Ames Fire & Waterworks; a division of Watts Water Technologies, Inc.
 - b. Conbraco Industries, Inc.
 - c. FEBCO; a division of Watts Water Technologies, Inc.
 - d. Flomatic Corporation.
 - e. Watts; a division of Watts Water Technologies, Inc.; Watts Regulator Company.
 - f. Zurn Industries, LLC; Plumbing Products Group; Wilkins Water Control Products.
- 3. Standard: ASSE 1013.
- 4. Operation: Continuous-pressure applications.
- 5. Pressure Loss: 12 psig maximum, through middle third of flow range.
- 6. Size: Insert NPS (DN).
- 7. Design Flow Rate: Insert gpm (L/s).
- 8. Selected Unit Flow Range Limits: Insert gpm (L/s).
- 9. Pressure Loss at Design Flow Rate: Insert psig (kPa) for sizes NPS 2 and smaller; Insert psig (kPa) for NPS 2-1/2 and larger.
- 10. Body: Bronze for NPS 2 and smaller; cast iron with interior lining that complies with AWWA C550 or that is FDA approved for NPS 2-1/2 and larger.
- 11. End Connections: Threaded for NPS 2 and smaller; flanged for NPS 2-1/2 and larger.
- 12. Configuration: Designed for horizontal, straight-through flow.
- 13. Accessories:
 - a. Valves NPS 2 and Smaller: Ball type with threaded ends on inlet and outlet.
 - b. Valves NPS 2-1/2 and Larger: Outside-screw and yoke-gate type with flanged ends on inlet and outlet.
 - c. Air-Gap Fitting: ASME A112.1.2, matching backflow-preventer connection.
- B. Hose-Connection Backflow Preventers :
 - 1. Manufacturers: Subject to compliance with requirements, provide products by the following:
 - 2. Basis-of-Design Product: Subject to compliance with requirements, provide or comparable product by one of the following:
 - a. Conbraco Industries, Inc.
 - b. Watts; a division of Watts Water Technologies, Inc.; Watts Regulator Company.
 - c. Woodford Manufacturing Company; a division of WCM Industries, Inc.
 - 3. Standard: ASSE 1052.
 - 4. Operation: Up to 10-foot head of water back pressure.
 - 5. Inlet Size: NPS 1/2 or NPS 3/4.

- 6. Outlet Size: Garden-hose thread complying with ASME B1.20.7.
- 7. Capacity: At least 3-gpm flow.
- C. Backflow-Preventer Test Kits :
 - 1. Manufacturers: Subject to compliance with requirements, provide products by the following:
 - 2. Basis-of-Design Product: Subject to compliance with requirements, provide or comparable product by one of the following:
 - a. Conbraco Industries, Inc.
 - b. FEBCO; a division of Watts Water Technologies, Inc.
 - c. Flomatic Corporation.
 - d. Watts; a division of Watts Water Technologies, Inc.; Watts Regulator Company.
 - e. Zurn Industries, LLC; Plumbing Products Group; Wilkins Water Control Products.
 - 3. Description: Factory calibrated, with gages, fittings, hoses, and carrying case with test-procedure instructions.

2.4 HOSE BIBBS

- A. Hose Bibbs :
 - 1. Standard: ASME A112.18.1 for sediment faucets.
 - 2. Body Material: Bronze.
 - 3. Seat: Bronze, replaceable.
 - 4. Supply Connections: NPS 1/2 or NPS 3/4 threaded or solder-joint inlet.
 - 5. Outlet Connection: Garden-hose thread complying with ASME B1.20.7.
 - 6. Pressure Rating: 125 psig.
 - 7. Vacuum Breaker: Integral or field-installation, nonremovable, drainable, hoseconnection vacuum breaker complying with ASSE 1011.
 - 8. Finish for Equipment Rooms: Rough bronze, or chrome or nickel plated.
 - 9. Finish for Service Areas: Rough bronze.
 - 10. Finish for Finished Rooms: Chrome or nickel plated.
 - 11. Operation for Equipment Rooms: Wheel handle or operating key.
 - 12. Operation for Service Areas: Wheel handle.
 - 13. Operation for Finished Rooms: Wheel handle.
 - 14. Include operating key with each operating-key hose bibb.
 - 15. Include integral wall flange with each chrome- or nickel-plated hose bibb.

2.5 DRAIN VALVES

- A. Ball-Valve-Type, Hose-End Drain Valves :
 - 1. Standard: MSS SP-110 for standard-port, two-piece ball valves.
 - 2. Pressure Rating: 400-psig minimum CWP.
 - 3. Size: NPS 3/4.

- 4. Body: Copper alloy.
- 5. Ball: Chrome-plated brass.
- 6. Seats and Seals: Replaceable.
- 7. Handle: Vinyl-covered steel.
- 8. Inlet: Threaded or solder joint.
- 9. Outlet: Threaded, short nipple with garden-hose thread complying with ASME B1.20.7 and cap with brass chain.
- 2.6 AIR VENTS
 - A. Welded-Construction Automatic Air Vents :
 - 1. Body: Stainless steel.
 - 2. Pressure Rating: 150-psig minimum pressure rating.
 - 3. Float: Replaceable, corrosion-resistant metal.
 - 4. Mechanism and Seat: Stainless steel.
 - 5. Size: NPS 3/8 minimum inlet.
 - 6. Inlet and Vent Outlet End Connections: Threaded.

2.7 FLEXIBLE CONNECTORS

- A. Manufacturers: Subject to compliance with requirements, provide products by the following:
- B. Basis-of-Design Product: Subject to compliance with requirements, provide or comparable product by one of the following:
 - 1. Flex-Hose Co., Inc.
 - 2. Flexicraft Industries.
 - 3. Flex Pression, Ltd.
 - 4. Flex-Weld Incorporated.
 - 5. Hyspan Precision Products, Inc.
 - 6. Metraflex, Inc.
 - 7. Unaflex.Universal Metal Hose; a Hyspan company.
- C. Stainless-Steel-Hose Flexible Connectors: Corrugated-stainless-steel tubing with stainless-steel wire-braid covering and ends welded to inner tubing.
 - 1. Working-Pressure Rating: Minimum 200 psig.
 - 2. End Connections NPS 2 and Smaller: Threaded steel-pipe nipple.
 - 3. End Connections NPS 2-1/2 and Larger: Flanged steel nipple.

PART 3 - EXECUTION

3.1 INSTALLATION

- A. Install backflow preventers in each water supply to mechanical equipment and systems and to other equipment and water systems that may be sources of contamination. Comply with authorities having jurisdiction.
 - 1. Locate backflow preventers in same room as connected equipment or system.
 - 2. Install drain for backflow preventers with atmospheric-vent drain connection with air-gap fitting, fixed air-gap fitting, or equivalent positive pipe separation of at least two pipe diameters in drain piping and pipe-to-floor drain. Locate air-gap device attached to or under backflow preventer. Simple air breaks are unacceptable for this application.
 - 3. Do not install bypass piping around backflow preventers.
- B. Install air vents at high points of water piping. Install drain piping and discharge onto floor drain.
- C. Install supply-type, trap-seal primer valves with outlet piping pitched down toward drain trap a minimum of 1 percent, and connect to floor-drain body, trap, or inlet fitting. Adjust valve for proper flow.

3.2 LABELING AND IDENTIFYING

- A. Equipment Nameplates and Signs: Install engraved plastic-laminate equipment nameplate or sign on or near each of the following:
 - 1. Reduced-pressure-principle backflow preventers.
 - 2. Supply-type, trap-seal primer valves.
- B. Distinguish among multiple units, inform operator of operational requirements, indicate safety and emergency precautions, and warn of hazards and improper operations, in addition to identifying unit. Nameplates and signs are specified in Section 220553
 "Identification for Plumbing Piping and Equipment."

3.3 FIELD QUALITY CONTROL

- A. Perform the following tests and inspections:
 - 1. Test each reduced-pressure-principle backflow preventer according to authorities having jurisdiction and the device's reference standard.
- B. Domestic water piping specialties will be considered defective if they do not pass tests and inspections.
- C. Prepare test and inspection reports.

3.4 ADJUSTING

A. Set field-adjustable temperature set points of temperature-actuated, water mixing valves.

END OF SECTION 221119

SECTION 221316 - SANITARY WASTE AND VENT PIPING

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. Section Includes:
 - 1. Pipe, tube, and fittings.
 - 2. Specialty pipe fittings.
 - 3. Encasement for underground metal piping.

1.3 PERFORMANCE REQUIREMENTS

- A. Components and installation shall be capable of withstanding the following minimum working pressure unless otherwise indicated:
 - 1. Soil, Waste, and Vent Piping: 10-foot head of water.
- B. Seismic Performance: Soil, waste, and vent piping and support and installation shall withstand the effects of earthquake motions determined according to ASCE/SEI 7.

1.4 ACTION SUBMITTALS

- A. Product Data: For each type of product indicated.
- B. Shop Drawings: For sovent drainage system. Include plans, elevations, sections, and details.

1.5 INFORMATIONAL SUBMITTALS

- A. Seismic Qualification Certificates: For waste and vent piping, accessories, and components, from manufacturer.
 - 1. Basis for Certification: Indicate whether withstand certification is based on actual test of assembled components or on calculation.
 - 2. Detailed description of piping anchorage devices on which the certification is based and their installation requirements.

1.6 QUALITY ASSURANCE

- A. Piping materials shall bear label, stamp, or other markings of specified testing agency.
- B. Comply with NSF/ANSI 14, "Plastics Piping Systems Components and Related Materials," for plastic piping components. Include marking with "NSF-dwv" for plastic drain, waste, and vent piping and "NSF-sewer" for plastic sewer piping.

1.7 PROJECT CONDITIONS

- A. Interruption of Existing Sanitary Waste Service: Do not interrupt service to facilities occupied by Owner or others unless permitted under the following conditions and then only after arranging to provide temporary service according to requirements indicated:
 - 1. Notify Owner no fewer than two days in advance of proposed interruption of sanitary waste service.
 - 2. Do not proceed with interruption of sanitary waste service without Owner's written permission.

PART 2 - PRODUCTS

2.1 PIPING MATERIALS

A. Comply with requirements in "Piping Schedule" Article for applications of pipe, tube, fitting materials, and joining methods for specific services, service locations, and pipe sizes.

2.2 HUB-AND-SPIGOT, CAST-IRON SOIL PIPE AND FITTINGS

- A. Pipe and Fittings: ASTM A 74, Service class(es).
- B. Gaskets: ASTM C 564, rubber.

2.3 HUBLESS, CAST-IRON SOIL PIPE AND FITTINGS

- A. Pipe and Fittings: ASTM A 888 or CISPI 301.
- B. CISPI, Hubless-Piping Couplings:
 - 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - a. ANACO-Husky.
 - b. Dallas Specialty & Mfg. Co.
 - c. Fernco Inc.
 - d. Matco-Norca, Inc.
 - e. MIFAB, Inc.

- f. Mission Rubber Company; a division of MCP Industries, Inc.
- g. Stant.
- h. Tyler Pipe.
- 2. Standards: ASTM C 1277 and CISPI 310.
- 3. Description: Stainless-steel corrugated shield with stainless-steel bands and tightening devices; and ASTM C 564, rubber sleeve with integral, center pipe stop.
- C. Heavy-Duty, Hubless-Piping Couplings:
 - 1. Manufacturers: Subject to compliance with requirements, :
 - a. ANACO-Husky.
 - b. Clamp-All Corp.
 - c. Dallas Specialty & Mfg. Co.
 - d. MIFAB, Inc.
 - e. Mission Rubber Company; a division of MCP Industries, Inc.
 - f. Stant.
 - g. Tyler Pipe.
 - h.
 - 2. Standards: ASTM C 1277 and ASTM C 1540.
 - 3. Description: Stainless-steel shield with stainless-steel bands and tightening devices; and ASTM C 564, rubber sleeve with integral, center pipe stop.
- D. Cast-Iron, Hubless-Piping Couplings:
 - 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - a. MG Piping Products Company.
 - 2. Standard: ASTM C 1277.
 - 3. Description: Two-piece ASTM A 48/A 48M, cast-iron housing; stainless-steel bolts and nuts; and ASTM C 564, rubber sleeve with integral, center pipe stop.

2.4 SPECIALTY PIPE FITTINGS

- A. Transition Couplings:
 - 1. General Requirements: Fitting or device for joining piping with small differences in OD's or of different materials. Include end connections same size as and compatible with pipes to be joined.
 - 2. Fitting-Type Transition Couplings: Manufactured piping coupling or specified piping system fitting.
 - 3. Unshielded, Nonpressure Transition Couplings:
 - a. Manufacturers: Subject to compliance with requirements, :

- 1) Dallas Specialty & Mfg. Co.
- 2) Fernco Inc.
- 3) Mission Rubber Company; a division of MCP Industries, Inc.
- 4) Plastic Oddities; a division of Diverse Corporate Technologies, Inc.
- b. Standard: ASTM C 1173.
- c. Description: Elastomeric, sleeve-type, reducing or transition pattern. Include shear ring and corrosion-resistant-metal tension band and tightening mechanism on each end.
- d. Sleeve Materials:
 - 1) For Cast-Iron Soil Pipes: ASTM C 564, rubber.
 - 2) For Plastic Pipes: ASTM F 477, elastomeric seal or ASTM D 5926, PVC.
 - 3) For Dissimilar Pipes: ASTM D 5926, PVC or other material compatible with pipe materials being joined.
- 4. Shielded, Nonpressure Transition Couplings:
 - a. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - 1) Cascade Waterworks Mfg. Co.
 - 2) Mission Rubber Company; a division of MCP Industries, Inc.
 - b. Standard: ASTM C 1460.
 - c. Description: Elastomeric or rubber sleeve with full-length, corrosion-resistant outer shield and corrosion-resistant-metal tension band and tightening mechanism on each end.
- B. Dielectric Fittings:
 - 1. General Requirements: Assembly of copper alloy and ferrous materials with separating nonconductive insulating material. Include end connections compatible with pipes to be joined.
 - 2. Dielectric Unions:
 - a. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - 1) Capitol Manufacturing Company.
 - 2) Central Plastics Company.
 - 3) Hart Industries International, Inc.
 - 4) Jomar International Ltd.
 - 5) Matco-Norca, Inc.
 - 6) McDonald, A. Y. Mfg. Co.
 - 7) Watts Regulator Co.; a division of Watts Water Technologies, Inc.
 - 8) Wilkins; a Zurn company.
 - b. Description:

- 1) Standard: ASSE 1079.
- 2) Pressure Rating: 125 psig minimum at 180 deg F.
- 3) End Connections: Solder-joint copper alloy and threaded ferrous.
- 3. Dielectric Flanges:
 - a. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - 1) Capitol Manufacturing Company.
 - 2) Central Plastics Company.
 - 3) Matco-Norca, Inc.
 - 4) Watts Regulator Co.; a division of Watts Water Technologies, Inc.
 - 5) Wilkins; a Zurn company.
 - b. Description:
 - 1) Standard: ASSE 1079.
 - 2) Factory-fabricated, bolted, companion-flange assembly.
 - 3) Pressure Rating: 125 psig minimum at 180 deg F.
 - 4) End Connections: Solder-joint copper alloy and threaded ferrous; threaded solder-joint copper alloy and threaded ferrous.
- 4. Dielectric-Flange Insulating Kits:
 - a. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - 1) Advance Products & Systems, Inc.
 - 2) Calpico, Inc.
 - 3) Central Plastics Company.
 - 4) Pipeline Seal and Insulator, Inc.
 - b. Description:
 - 1) Nonconducting materials for field assembly of companion flanges.
 - 2) Pressure Rating: 150 psig.
 - 3) Gasket: Neoprene or phenolic.
 - 4) Bolt Sleeves: Phenolic or polyethylene.
 - 5) Washers: Phenolic with steel backing washers.
- 5. Dielectric Nipples:
 - a. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - 1) Elster Perfection.
 - 2) Grinnell Mechanical Products.
 - 3) Matco-Norca, Inc.
 - 4) Precision Plumbing Products, Inc.
 - 5) Victaulic Company.

- b. Description:
 - 1) Standard: IAPMO PS 66
 - 2) Electroplated steel nipple.
 - 3) Pressure Rating: 300 psig at 225 deg F.
 - 4) End Connections: Male threaded or grooved.
 - 5) Lining: Inert and noncorrosive, propylene.

2.5 ENCASEMENT FOR UNDERGROUND METAL PIPING

- A. Standard: ASTM A 674 or AWWA C105/A 21.5.
- B. Material: Linear low-density polyethylene film of 0.008-inch minimum thickness.
- C. Form: Sheet.
- D. Color: Black.

PART 3 - EXECUTION

3.1 EARTH MOVING

A. Comply with requirements for excavating, trenching, and backfilling specified in Section 312000 "Earth Moving."

3.2 PIPING INSTALLATION

- Drawing plans, schematics, and diagrams indicate general location and arrangement of piping systems. Indicated locations and arrangements were used to size pipe and calculate friction loss, expansion, pump sizing, and other design considerations. Install piping as indicated unless deviations to layout are approved on coordination drawings.
- B. Install piping in concealed locations unless otherwise indicated and except in equipment rooms and service areas.
- C. Install piping indicated to be exposed and piping in equipment rooms and service areas at right angles or parallel to building walls. Diagonal runs are prohibited unless specifically indicated otherwise.
- D. Install piping above accessible ceilings to allow sufficient space for ceiling panel removal.
- E. Install piping to permit valve servicing.
- F. Install piping at indicated slopes.
- G. Install piping free of sags and bends.

- H. Install fittings for changes in direction and branch connections.
- I. Install piping to allow application of insulation.
- J. Install seismic restraints on piping. Comply with requirements for seismic-restraint devices specified in Section 220548 "Vibration and Seismic Controls for Plumbing Piping and Equipment."
- K. Make changes in direction for soil and waste drainage and vent piping using appropriate branches, bends, and long-sweep bends. Sanitary tees and short-sweep 1/4 bends may be used on vertical stacks if change in direction of flow is from horizontal to vertical. Use long-turn, double Y-branch and 1/8-bend fittings if two fixtures are installed back to back or side by side with common drain pipe. Straight tees, elbows, and crosses may be used on vent lines. Do not change direction of flow more than 90 degrees. Use proper size of standard increasers and reducers if pipes of different sizes are connected. Reducing size of drainage piping in direction of flow is prohibited.
- L. Lay buried building drainage piping beginning at low point of each system. Install true to grades and alignment indicated, with unbroken continuity of invert. Place hub ends of piping upstream. Install required gaskets according to manufacturer's written instructions for use of lubricants, cements, and other installation requirements. Maintain swab in piping and pull past each joint as completed.
- M. Install soil and waste drainage and vent piping at the following minimum slopes unless otherwise indicated:
 - 1. Building Sanitary Drain: 2 percent downward in direction of flow for piping NPS 3 and smaller; 2 percent downward in direction of flow for piping NPS 4 and larger.
 - 2. Horizontal Sanitary Drainage Piping: 2 percent downward in direction of flow.
 - 3. Vent Piping: 1 percent down toward vertical fixture vent or toward vent stack.
- N. Install cast-iron soil piping according to CISPI's "Cast Iron Soil Pipe and Fittings Handbook," Chapter IV, "Installation of Cast Iron Soil Pipe and Fittings."
 - 1. Install encasement on underground piping according to ASTM A 674 or AWWA C105/A 21.5.
- O. Install underground, ductile-iron, force-main piping according to AWWA C600. Install buried piping inside building between wall and floor penetrations and connection to sanitary sewer piping outside building with restrained joints. Anchor pipe to wall or floor. Install thrust-block supports at vertical and horizontal offsets.
 - 1. Install encasement on piping according to ASTM A 674 or AWWA C105/A 21.5.
- P. Install underground, copper, force-main tubing according to CDA's "Copper Tube Handbook."

- 1. Install encasement on piping according to ASTM A 674 or AWWA C105/A 21.5.
- Q. Plumbing Specialties:
 - 1. Install cleanouts at grade and extend to where building sanitary drains connect to building sanitary sewers in sanitary drainage gravity-flow piping. Install cleanout fitting with closure plug inside the building in sanitary drainage forcemain piping. Comply with requirements for cleanouts specified in Section 221319 "Sanitary Waste Piping Specialties."
 - 2. Install drains in sanitary drainage gravity-flow piping. Comply with requirements for drains specified in Section 221319 "Sanitary Waste Piping Specialties."
- R. Do not enclose, cover, or put piping into operation until it is inspected and approved by authorities having jurisdiction.
- S. Install sleeves for piping penetrations of walls, ceilings, and floors. Comply with requirements for sleeves specified in Section 220517 "Sleeves and Sleeve Seals for Plumbing Piping."
- T. Install sleeve seals for piping penetrations of concrete walls and slabs. Comply with requirements for sleeve seals specified in Section 220517 "Sleeves and Sleeve Seals for Plumbing Piping."
- U. Install escutcheons for piping penetrations of walls, ceilings, and floors. Comply with requirements for escutcheons specified in Section 220518 "Escutcheons for Plumbing Piping."

3.3 JOINT CONSTRUCTION

- A. Join hub-and-spigot, cast-iron soil piping with gasket joints according to CISPI's "Cast Iron Soil Pipe and Fittings Handbook" for compression joints.
- B. Join hubless, cast-iron soil piping according to CISPI 310 and CISPI's "Cast Iron Soil Pipe and Fittings Handbook" for hubless-piping coupling joints.
- C. Threaded Joints: Thread pipe with tapered pipe threads according to ASME B1.20.1. Cut threads full and clean using sharp dies. Ream threaded pipe ends to remove burrs and restore full ID. Join pipe fittings and valves as follows:
 - 1. Apply appropriate tape or thread compound to external pipe threads unless dry seal threading is specified.
 - 2. Damaged Threads: Do not use pipe or pipe fittings with threads that are corroded or damaged. Do not use pipe sections that have cracked or open welds.
- D. Flanged Joints: Align bolt holes. Select appropriate gasket material, size, type, and thickness. Install gasket concentrically positioned. Use suitable lubricants on bolt threads. Torque bolts in cross pattern.

3.4 SPECIALTY PIPE FITTING INSTALLATION

- A. Transition Couplings:
 - 1. Install transition couplings at joints of piping with small differences in OD's.
 - 2. In Drainage Piping: Shielded, nonpressure transition couplings.

B. Dielectric Fittings:

- 1. Install dielectric fittings in piping at connections of dissimilar metal piping and tubing.
- 2. Dielectric Fittings for NPS 2 and Smaller: Use dielectric nipples unions.
- 3. Dielectric Fittings for NPS 2-1/2 to NPS 4: Use dielectric flanges flange kits nipples.
- 4. Dielectric Fittings for NPS 5 and Larger: Use dielectric flange kits.

3.5 VALVE INSTALLATION

A. General valve installation requirements are specified in Section 220523 "General-Duty Valves for Plumbing Piping."

3.6 HANGER AND SUPPORT INSTALLATION

- A. Comply with requirements for seismic-restraint devices specified in Section 220548 "Vibration and Seismic Controls for Plumbing Piping and Equipment."
- B. Comply with requirements for pipe hanger and support devices and installation specified in Section 220529 "Hangers and Supports for Plumbing Piping and Equipment."
 - 1. Install carbon-steel pipe hangers for horizontal piping in noncorrosive environments.
 - 2. Install stainless-steel pipe hangers for horizontal piping in corrosive environments.
 - 3. Install carbon-steel pipe support clamps for vertical piping in noncorrosive environments.
 - 4. Install stainless-steel pipe support clamps for vertical piping in corrosive environments.
 - 5. Vertical Piping: MSS Type 8 or Type 42, clamps.
 - 6. Install individual, straight, horizontal piping runs:
 - a. 100 Feet and Less: MSS Type 1, adjustable, steel clevis hangers.
 - b. Longer Than 100 Feet: MSS Type 43, adjustable roller hangers.
 - c. Longer Than 100 Feet if Indicated: MSS Type 49, spring cushion rolls.
 - 7. Multiple, Straight, Horizontal Piping Runs 100 Feet or Longer: MSS Type 44, pipe rolls. Support pipe rolls on trapeze.
 - 8. Base of Vertical Piping: MSS Type 52, spring hangers.

- C. Support horizontal piping and tubing within 12 inches of each fitting, valve, and coupling.
- D. Support vertical piping and tubing at base and at each floor.
- E. Rod diameter may be reduced one size for double-rod hangers, with 3/8-inch minimum rods.
- F. Install hangers for cast-iron soil piping with the following maximum horizontal spacing and minimum rod diameters:
 - 1. NPS 1-1/2 and NPS 2: 60 inches with 3/8-inch rod.
 - 2. NPS 3: 60 inches with 1/2-inch rod.
 - 3. NPS 4 and NPS 5: 60 inches with 5/8-inch rod.
 - 4. NPS 6 and NPS 8: 60 inches with 3/4-inch rod.
 - 5. NPS 10 and NPS 12: 60 inches with 7/8-inch rod.
 - 6. Spacing for 10-foot lengths may be increased to 10 feet. Spacing for fittings is limited to 60 inches.
- G. Install supports for vertical cast-iron soil piping every 15 feet.
- H. Support piping and tubing not listed above according to MSS SP-69 and manufacturer's written instructions.

3.7 CONNECTIONS

- A. Drawings indicate general arrangement of piping, fittings, and specialties.
- B. Connect drainage and vent piping to the following:
 - 1. Plumbing Fixtures and Equipment: Connect atmospheric vent piping in sizes indicated, but not smaller than required by authorities having jurisdiction.
 - 2. Plumbing Specialties: Connect drainage and vent piping in sizes indicated, but not smaller than required by plumbing code.
 - 3. Install test tees (wall cleanouts) in conductors near floor and floor cleanouts with cover flush with floor.
 - 4. Install horizontal backwater valves with cleanout cover flush with floor.
 - 5. Comply with requirements for cleanouts drains specified in Section 221319 "Sanitary Waste Piping Specialties."
 - 6. Equipment: Connect drainage piping as indicated. Provide shutoff valve if indicated and union for each connection. Use flanges instead of unions for connections NPS 2-1/2 and larger.
- C. Where installing piping adjacent to equipment, allow space for service and maintenance of equipment.
- D. Make connections according to the following unless otherwise indicated:
 - 1. Install unions, in piping NPS 2 and smaller, adjacent to each valve and at final connection to each piece of equipment.

2. Install flanges, in piping NPS 2-1/2 and larger, adjacent to flanged valves and at final connection to each piece of equipment.

3.8 IDENTIFICATION

A. Identify exposed sanitary waste and vent piping. Comply with requirements for identification specified in Section 220553 "Identification for Plumbing Piping and Equipment."

3.9 FIELD QUALITY CONTROL

- A. During installation, notify authorities having jurisdiction at least 24 hours before inspection must be made. Perform tests specified below in presence of authorities having jurisdiction.
 - 1. Roughing-in Inspection: Arrange for inspection of piping before concealing or closing-in after roughing-in and before setting fixtures.
 - 2. Final Inspection: Arrange for final inspection by authorities having jurisdiction to observe tests specified below and to ensure compliance with requirements.
- B. Reinspection: If authorities having jurisdiction find that piping will not pass test or inspection, make required corrections and arrange for reinspection.
- C. Reports: Prepare inspection reports and have them signed by authorities having jurisdiction.
- D. Test sanitary drainage and vent piping according to procedures of authorities having jurisdiction or, in absence of published procedures, as follows:
 - 1. Test for leaks and defects in new piping and parts of existing piping that have been altered, extended, or repaired. If testing is performed in segments, submit separate report for each test, complete with diagram of portion of piping tested.
 - 2. Leave uncovered and unconcealed new, altered, extended, or replaced drainage and vent piping until it has been tested and approved. Expose work that was covered or concealed before it was tested.
 - 3. Roughing-in Plumbing Test Procedure: Test drainage and vent piping except outside leaders on completion of roughing-in. Close openings in piping system and fill with water to point of overflow, but not less than 10-foot head of water. From 15 minutes before inspection starts to completion of inspection, water level must not drop. Inspect joints for leaks.
 - 4. Finished Plumbing Test Procedure: After plumbing fixtures have been set and traps filled with water, test connections and prove they are gastight and watertight. Plug vent-stack openings on roof and building drains where they leave building. Introduce air into piping system equal to pressure of 1-inch wg. Use U-tube or manometer inserted in trap of water closet to measure this pressure. Air pressure must remain constant without introducing additional air throughout period of inspection. Inspect plumbing fixture connections for gas and water leaks.

- 5. Repair leaks and defects with new materials and retest piping, or portion thereof, until satisfactory results are obtained.
- 6. Prepare reports for tests and required corrective action.

3.10 CLEANING AND PROTECTION

- A. Clean interior of piping. Remove dirt and debris as work progresses.
- B. Protect drains during remainder of construction period to avoid clogging with dirt and debris and to prevent damage from traffic and construction work.
- C. Place plugs in ends of uncompleted piping at end of day and when work stops.

3.11 PIPING SCHEDULE

- A. Flanges and unions may be used on aboveground pressure piping unless otherwise indicated.
- B. Aboveground, soil and waste piping NPS 4 and smaller shall be the following:
 - 1. Hubless, cast-iron soil pipe and fittings; heavy-duty hubless-piping couplings; and coupled joints.
 - 2. Dissimilar Pipe-Material Couplings: Unshielded Shielded, nonpressure transition couplings.
- C. Aboveground, soil and waste piping NPS 5 and larger shall be any of the following:
 - 1. Service class, cast-iron soil pipe and fittings; gaskets; and gasketed joints.
 - 2. Hubless, cast-iron soil pipe and fittings; heavy-duty hubless-piping couplings; and coupled joints.
 - 3. Dissimilar Pipe-Material Couplings: Unshielded Shielded, nonpressure transition couplings.
- D. Aboveground, vent piping NPS 4 and smaller shall be the following:
 - 1. Hubless, cast-iron soil pipe and fittings; heavy-duty hubless-piping couplings; and coupled joints.
 - 2. Dissimilar Pipe-Material Couplings: Unshielded Shielded, nonpressure transition couplings.
- E. Underground, soil, waste, and vent piping NPS 4 and smaller shall be the following:
 - 1. Hubless, cast-iron soil pipe and fittings; heavy-duty hubless-piping couplings; and coupled joints.
 - 2. Dissimilar Pipe-Material Couplings: Unshielded, nonpressure transition couplings.
- F. Underground, soil and waste piping NPS 5 and larger shall be the following:

1. Hubless, cast-iron soil pipe and fittings; heavy-duty hubless-piping couplings; coupled joints.

END OF SECTION 221316

THIS PAGE INTENTIONALLY LEFT BLANK

SECTION 221319 - SANITARY WASTE PIPING SPECIALTIES

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section Includes:

- 1. Cleanouts.
- 2. Floor drains.
- 3. Trench drains.
- 4. Air-admittance valves.
- 5. Roof flashing assemblies.
- 6. Through-penetration firestop assemblies.
- 7. Miscellaneous sanitary drainage piping specialties.
- 8. Flashing materials.

1.3 DEFINITIONS

A. ABS: Acrylonitrile-butadiene-styrene plastic.

1.4 ACTION SUBMITTALS

- A. Product Data: For each type of product indicated. Include rated capacities, operating characteristics, and accessories for the following:
- B. Shop Drawings: Show fabrication and installation details for frost-resistant vent terminals.

1.5 QUALITY ASSURANCE

- A. Drainage piping specialties shall bear label, stamp, or other markings of specified testing agency.
- B. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, Article 100, by a testing agency acceptable to authorities having jurisdiction, and marked for intended use.

1.6 COORDINATION

A. Coordinate size and location of roof penetrations.

PART 2 - PRODUCTS

2.1 CLEANOUTS

- A. Exposed Metal Cleanouts :
 - 1. ASME A112.36.2M, Cast-Iron Cleanouts:
 - a. Manufacturers: Subject to compliance with requirements, provide products by the following :
 - b. Basis-of-Design Product: Subject to compliance with requirements, provide or comparable product by one of the following:
 - 1) Josam Company.
 - 2) MIFAB, Inc.
 - 3) Smith, Jay R. Mfg. Co.
 - 4) Tyler Pipe.
 - 5) Watts Drainage Products.
 - 6) Zurn Plumbing Products Group.
 - 2. Standard: ASME A112.36.2M for cast iron for cleanout test tee.
 - 3. Size: Same as connected drainage piping
 - 4. Body Material: Hub-and-spigot, cast-iron soil pipe T-branch as required to match connected piping.
 - 5. Closure: Countersunk, brass plug.
 - 6. Closure Plug Size: Same as or not more than one size smaller than cleanout size.
- B. Metal Floor Cleanouts :
 - 1. Standard: ASME A112.36.2M for adjustable housing cleanout.
 - 2. Size: Same as connected branch.
 - 3. Type: Adjustable housing.
 - 4. Clamping Device: Not required.
 - 5. Outlet Connection: Inside calk.
 - 6. Closure: Brass plug with straight threads and gasket.
 - 7. Adjustable Housing Material: Cast iron with threads.
 - 8. Frame and Cover Material and Finish: Nickel-bronze, copper alloy.
 - 9. Frame and Cover Shape: Round.
 - 10. Top Loading Classification: Extra Heavy Duty.
 - 11. Riser: ASTM A 74, Extra-Heavy class, cast-iron drainage pipe fitting and riser to cleanout.
 - 12. Size: Same as connected branch.
 - 13. Housing: Stainless steel.
 - 14. Closure: Stainless steel with seal.

15. Riser: Stainless-steel drainage pipe fitting to cleanout.

2.2 FLOOR DRAINS

- A. Cast-Iron Floor Drains :
 - 1. Manufacturers: Subject to compliance with requirements, provide products by the following:
 - 2. Basis-of-Design Product: Subject to compliance with requirements, provide or comparable product by one of the following:
 - a. Commercial Enameling Co.
 - b. Josam Company; Josam Div.
 - c. MIFAB, Inc.
 - d. Prier Products, Inc.
 - e. Smith, Jay R. Mfg. Co.
 - f. Tyler Pipe; Wade Div.
 - g. Watts Drainage Products.
 - h. Zurn Plumbing Products Group; .
 - 3. Standard: ASME A112.6.3.
 - 4. Pattern: Area Floor Funnel floor Sanitary drain.
 - 5. Body Material: Gray iron.
 - 6. Seepage Flange: Not required.
 - 7. Anchor Flange: Not required.
 - 8. Clamping Device: Not required.
 - 9. Outlet: Bottom.
 - 10. Backwater Valve: Drain-outlet type.
 - 11. Coating on Interior and Exposed Exterior Surfaces: Acid-resistant enamel.
 - 12. Sediment Bucket: Not required.
 - 13. Top or Strainer Material: Bronze.
 - 14. Top of Body and Strainer Finish: Nickel bronze.
 - 15. Top Shape: Round.
 - 16. Dimensions of Top or Strainer:
 - 17. Top Loading Classification: Extra Heavy-Duty.
 - 18. Funnel: Insert description and dimensions.
 - 19. Inlet Fitting: Not required.
 - 20. Trap Material: Bronze.
 - 21. Trap Pattern: Deep-seal P-trap Standard P-trap.
 - 22. Trap Features: Cleanout.

2.3 TRENCH DRAINS

- A. Trench Drains :
 - 1. Manufacturers: Subject to compliance with requirements, provide products by the following:
 - 2. Basis-of-Design Product: Subject to compliance with requirements, provide or comparable product by one of the following:

- a. Josam Company; Josam Div.
- b. MIFAB, Inc.
- c. Smith, Jay R. Mfg. Co.; Division of Smith Industries, Inc.
- d. Tyler Pipe; Wade Div.
- e. Watts Drainage Products Inc.
- f. Zurn Plumbing Products Group; Specification Drainage Operation.
- 3. Standard: ASME A112.6.3 for trench drains.
- 4. Material: Ductile or gray iron.
- 5. Flange: Anchor.
- 6. Clamping Device: Not required.
- 7. Outlet: Bottom.
- 8. Grate Material: Ductile iron.
- 9. Grate Finish: Painted.
- 10. Dimensions of Frame and Grate:
- 11. Top Loading Classification: Extra Heavy-Duty.
- 12. Trap Material: Cast iron.
- 13. Trap Pattern: Standard P-trap.

2.4 AIR-ADMITTANCE VALVES

- A. Fixture Air-Admittance Valves :
 - 1. Manufacturers: Subject to compliance with requirements, provide products by the following:
 - 2. Basis-of-Design Product: Subject to compliance with requirements, provide or comparable product by one of the following:
 - a. Ayrlett, LLC.
 - b. Durgo, Inc.
 - c. Oatey.
 - d. ProSet Systems Inc.
 - e. RectorSeal.
 - f. Studor, Inc.
 - 3. Standard: ASSE 1051, Type A for single fixture or Type B for branch piping.
 - 4. Housing: Plastic.
 - 5. Operation: Mechanical sealing diaphragm.
 - 6. Size: Same as connected fixture or branch vent piping.
- B. Stack Air-Admittance Valves :
 - 1. Manufacturers: Subject to compliance with requirements, provide products by the following:
 - 2. Basis-of-Design Product: Subject to compliance with requirements, provide or comparable product by one of the following:
 - a. Durgo, Inc.
 - b. Oatey.
 - c. Studor, Inc.

- 3. Standard: ASSE 1050 for vent stacks.
- 4. Housing: Plastic.
- 5. Operation: Mechanical sealing diaphragm.
- 6. Size: Same as connected stack vent or vent stack.

2.5 ROOF FLASHING ASSEMBLIES

- A. Roof Flashing Assemblies :
 - 1. Manufacturers: Subject to compliance with requirements, provide products by the following:
 - 2. Basis-of-Design Product: Subject to compliance with requirements, provide or comparable product by one of the following:
 - a. Acorn Engineering Company; Elmdor/Stoneman Div.
 - b. Thaler Metal Industries Ltd.
 - 3. Description: Manufactured assembly made of 6.0-lb/sq. ft., 0.0938-inch- thick, lead flashing collar and skirt extending at least 8 inches from pipe, with galvanized-steel boot reinforcement and counterflashing fitting.
 - a. Open-Top Vent Cap: Without cap.
 - b. Low-Silhouette Vent Cap: With vandal-proof vent cap.
 - c. Extended Vent Cap: With field-installed, vandal-proof vent cap.

2.6 THROUGH-PENETRATION FIRESTOP ASSEMBLIES

- A. Through-Penetration Firestop Assemblies :
 - 1. Manufacturers: Subject to compliance with requirements, provide products by the following:
 - 2. Basis-of-Design Product: Subject to compliance with requirements, provide or comparable product by one of the following:
 - a. ProSet Systems Inc.
 - 3. Standard: UL 1479 assembly of sleeve and stack fitting with firestopping plug.
 - 4. Size: Same as connected soil, waste, or vent stack.
 - 5. Sleeve: Molded PVC plastic, of length to match slab thickness and with integral nailing flange on one end for installation in cast-in-place concrete slabs.
 - 6. Stack Fitting: ASTM A 48/A 48M, gray-iron, hubless-pattern, wye branch with neoprene O-ring at base and gray-iron plug in thermal-release harness. Include PVC protective cap for plug.
 - 7. Special Coating: Corrosion resistant on interior of fittings.

2.7 MISCELLANEOUS SANITARY DRAINAGE PIPING SPECIALTIES

A. Open Drains :

- 1. Description: Shop or field fabricate from ASTM A 74, Service class, hub-andspigot, cast-iron, soil-pipe fittings. Include P-trap, hub-and-spigot riser section; and where required, increaser fitting joined with ASTM C 564, rubber gaskets.
- 2. Size: Same as connected waste piping with increaser fitting of size indicated.
- B. Floor-Drain, Trap-Seal Primer Fittings :
 - 1. Description: Cast iron, with threaded inlet and threaded or spigot outlet, and trap-seal primer valve connection.
 - 2. Size: Same as floor drain outlet with NPS 1/2 side inlet.
- C. Air-Gap Fittings :
 - 1. Standard: ASME A112.1.2, for fitting designed to ensure fixed, positive air gap between installed inlet and outlet piping.
 - 2. Body: Bronze or cast iron.
 - 3. Inlet: Opening in top of body.
 - 4. Outlet: Larger than inlet.
 - 5. Size: Same as connected waste piping and with inlet large enough for associated indirect waste piping.
- D. Sleeve Flashing Device :
 - 1. Description: Manufactured, cast-iron fitting, with clamping device, that forms sleeve for pipe floor penetrations of floor membrane. Include galvanized-steel pipe extension in top of fitting that will extend 2 inches above finished floor and galvanized-steel pipe extension in bottom of fitting that will extend through floor slab.
 - 2. Size: As required for close fit to riser or stack piping.
- E. Stack Flashing Fittings :
 - 1. Description: Counterflashing-type, cast-iron fitting, with bottom recess for terminating roof membrane, and with threaded or hub top for extending vent pipe.
 - 2. Size: Same as connected stack vent or vent stack.
- F. Vent Caps :
 - 1. Description: Cast-iron body with threaded or hub inlet and vandal-proof design. Include vented hood and setscrews to secure to vent pipe.
 - 2. Size: Same as connected stack vent or vent stack.

2.8 FLASHING MATERIALS

- A. Elastic Membrane Sheet: ASTM D 4068, flexible, chlorinated polyethylene, 40-mil minimum thickness.
- B. Fasteners: Metal compatible with material and substrate being fastened.

- C. Metal Accessories: Sheet metal strips, clamps, anchoring devices, and similar accessory units required for installation; matching or compatible with material being installed.
- D. Solder: ASTM B 32, lead-free alloy.
- E. Bituminous Coating: SSPC-Paint 12, solvent-type, bituminous mastic.

PART 3 - EXECUTION

3.1 INSTALLATION

- A. Equipment Mounting:
 - 1. Comply with requirements for vibration isolation and seismic control devices specified in Section 220548 "Vibration and Seismic Controls for Plumbing Piping and Equipment"
 - 2. Comply with requirements for vibration isolation devices specified in Section 220548.13 "Vibration Controls for Plumbing Piping and Equipment."
- B. Install cleanouts in aboveground piping and building drain piping according to the following, unless otherwise indicated:
 - 1. Size same as drainage piping up to NPS 4. Use NPS 4 for larger drainage piping unless larger cleanout is indicated.
 - 2. Locate at each change in direction of piping greater than 45 degrees.
 - 3. Locate at minimum intervals of 50 feet for piping NPS 4 and smaller and 100 feet for larger piping.
 - 4. Locate at base of each vertical soil and waste stack.
- C. For floor cleanouts for piping below floors, install cleanout deck plates with top flush with finished floor.
- D. For cleanouts located in concealed piping, install cleanout wall access covers, of types indicated, with frame and cover flush with finished wall.
- E. Install floor drains at low points of surface areas to be drained. Set grates of drains flush with finished floor, unless otherwise indicated.
 - 1. Position floor drains for easy access and maintenance.
 - 2. Set floor drains below elevation of surrounding finished floor to allow floor drainage. Set with grates depressed according to the following drainage area radii:
 - a. Radius, 30 Inches or Less: Equivalent to 1 percent slope, but not less than 1/4-inch total depression.
 - b. Radius, 30 to 60 Inches: Equivalent to 1 percent slope.
 - c. Radius, 60 Inches or Larger: Equivalent to 1 percent slope, but not greater than 1-inch total depression.

- 3. Install floor-drain flashing collar or flange so no leakage occurs between drain and adjoining flooring. Maintain integrity of waterproof membranes where penetrated.
- 4. Install individual traps for floor drains connected to sanitary building drain, unless otherwise indicated.
- F. Install trench drains at low points of surface areas to be drained. Set grates of drains flush with finished surface, unless otherwise indicated.
- G. Install fixture air-admittance valves on fixture drain piping.
- H. Install stack air-admittance valves at top of stack vent and vent stack piping.
- I. Install roof flashing assemblies on sanitary stack vents and vent stacks that extend through roof.
- J. Install flashing fittings on sanitary stack vents and vent stacks that extend through roof.
- K. Install through-penetration firestop assemblies in plastic conductors and stacks at floor penetrations.
- L. Assemble open drain fittings and install with top of hub 2 inches above floor.
- M. Install floor-drain, trap-seal primer fittings on inlet to floor drains that require trap-seal primer connection.
 - 1. Exception: Fitting may be omitted if trap has trap-seal primer connection.
 - 2. Size: Same as floor drain inlet.
- N. Install air-gap fittings on draining-type backflow preventers and on indirect-waste piping discharge into sanitary drainage system.
- O. Install sleeve flashing device with each riser and stack passing through floors with waterproof membrane.
- P. Install vent caps on each vent pipe passing through roof.
- Q. Install frost-proof vent caps on each vent pipe passing through roof. Maintain 1-inch clearance between vent pipe and roof substrate.
- R. Install wood-blocking reinforcement for wall-mounting-type specialties.
- S. Install traps on plumbing specialty drain outlets. Omit traps on indirect wastes unless trap is indicated.

3.2 CONNECTIONS

A. Comply with requirements in Section 221316 "Sanitary Waste and Vent Piping" for piping installation requirements. Drawings indicate general arrangement of piping, fittings, and specialties.

B. Install piping adjacent to equipment to allow service and maintenance.

3.3 FLASHING INSTALLATION

- A. Fabricate flashing from single piece unless large pans, sumps, or other drainage shapes are required. Join flashing according to the following if required:
- B. Install sheet flashing on pipes, sleeves, and specialties passing through or embedded in floors and roofs with waterproof membrane.
 - 1. Pipe Flashing: Sleeve type, matching pipe size, with minimum length of 10 inches, and skirt or flange extending at least 8 inchesaround pipe.
 - 2. Sleeve Flashing: Flat sheet, with skirt or flange extending at least 8 inches around sleeve.
 - 3. Embedded Specialty Flashing: Flat sheet, with skirt or flange extending at least 8 inches around specialty.
- C. Set flashing on floors and roofs in solid coating of bituminous cement.
- D. Secure flashing into sleeve and specialty clamping ring or device.
- E. Install flashing for piping passing through roofs with counterflashing or commercially made flashing fittings, according to Section 076200 "Sheet Metal Flashing and Trim."
- F. Extend flashing up vent pipe passing through roofs and turn down into pipe, or secure flashing into cast-iron sleeve having calking recess.
- G. Fabricate and install flashing and pans, sumps, and other drainage shapes.

3.4 LABELING AND IDENTIFYING

A. Distinguish among multiple units, inform operator of operational requirements, indicate safety and emergency precautions, and warn of hazards and improper operations, in addition to identifying unit. Nameplates and signs are specified in Section 220553 "Identification for Plumbing Piping and Equipment."

END OF SECTION 221319

THIS PAGE INTENTIONALLY LEFT BLANK

SECTION 230000

GENERAL MECHANICAL REQUIREMENTS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the contract, including General and Supplementary Conditions and Division 1 Specification Sections, apply to this Section.

1.2 SUMMARY

A. This section describes the general mechanical requirements of these specifications and shall apply to all phases of the work specified, shown on the drawings, or required to provide for complete installation of mechanical systems for this project.

1.3 WARRANTIES

A. The Contractor shall warrant all materials, workmanship and equipment against defects for a period of one year after the date of substantial completion. Certain equipment shall be warranted beginning at the time of final acceptance or for longer periods of time as specified in those divisions of the Project Manual. The Contractor shall repair or replace, at no additional cost to the Owner, any item which may become defective within the warrant period. Any manufacturers' warranties concerning any item installed will run to the benefit of the Owner. The Contractor agrees not to void or impair, or to allow Sub-Contractors to void or impair, any warranties regarding products or items installed as part of this project. The repair of faulty workmanship shall be considered to be included in the contract.

1.4 ALTERNATES

A. Alternates, if required, shall be as described in the "Alternates" section of this Project Manual, as described on the proposal form, or as shown on the drawings.

1.5 QUESTIONS OF INTERPRETATION

A. If questions arise during the bidding process regarding the meaning of any portion of the contract documents, the prospective bidder shall submit the questions to the Architect/Engineer for clarification. Any definitive interpretation or clarification of the contract documents will be published by addenda, properly issued to each person holding documents, prior to the bid date. Verbal interpretation or explanation not issued in the form of an addendum shall not be considered part of the bidding documents. When submitting questions for clarification, adequate time for issuance and delivery of addenda must be allowed.

B. The Architect/Engineer shall be the sole judge regarding interpretations of conflicts within contract documents.

1.6 CONTRACT DOCUMENT DISCREPANCIES

A. If any ambiguities should appear in the contract documents, the Contractor shall request clarification from the Architect/Engineer before proceeding with the work. If the Contractor fails to make such request, no excuse will thereafter be entertained for failure to carry out the work in a manner satisfactory to the Architect/Engineer. Should a conflict occur within the contract documents, the Contractor is deemed to have estimated the more expensive way of doing the work unless a written clarification from the Architect/Engineer was requested and obtained before submission of proposed methods or materials.

1.7 DEFINITIONS

- A. The following definitions shall apply throughout the contract documents:
 - 1. Architect/Engineer: Architect or Engineer
 - 2. Code: All applicable national, state and local codes
 - 3. Contractor: Any Contractor performing work required by the Contract Documents
 - 4. Electrical: All electrical work required by the contract documents
 - 5. Furnish: Supply and deliver to the site ready for installation
 - 6. Indicated: Noted, scheduled or specified
 - 7. Mechanical: All mechanical work required by the contract documents
 - 8. Provide: Furnish, install and connect, complete and ready for use
 - 9. Selected: Selected by the Architect or Engineer

1.8 SYMBOLS

A. Items of equipment and materials are indicated on the drawings in accordance with the symbols shown on the plans.

1.9 ABBREVIATIONS

- A. The following abbreviations apply throughout the contract documents:
 - 1. AMCA: Air Moving Council of America
 - 2. ANSI: American National Standards Institute
 - 3. ARI: American Refrigeration Institute
 - 4. ASHRAE: American Society of Heating, Refrigerating and Air Conditioning Engineers
 - 5. ASME: American Society of Mechanical Engineers
 - 6. ASTM Specification: Standard specifications of the American Society for Testing Materials
 - 7. FM: Factory Mutual Engineering Corporation

- 8. IRI: Industrial Risk Insurers
- 9. NEC: National Electrical Code, latest edition
- 10. NEMA: National Electrical Manufacturers Association
- 11. NFPA: National Fire Protection Association
- 12. SMACNA: Sheet Metal and Air Conditioning Contractors National Association
- 13. UL or Underwriters: Underwriters Laboratories, Inc.
- 14. ADA: Americans with Disabilities Act

1.10 CODES

- A. The work shall be performed by persons skilled in the trade involved and shall be done in a manner consistent with normal industry standards. All work shall conform to all applicable sections of currently adopted editions of the following codes, standards and specifications:
 - 1. Safety and Health Regulations for Construction
 - 2. Occupational Safety and Health Standards (OSHA), National Consensus Standards and Established Federal Standards
 - 3. National Electrical Code (NEC), Latest Edition
 - 4. National Fire Protection Association (NFPA)
 - 5. Life Safety Code (NFPA 101)
 - 6. Factory Mutual Engineering Corporation or other recognized national laboratories
 - 7. American Gas Association (AGA)
 - 8. Underwriters' Laboratories, Inc. (UL)
 - 9. National Electrical Safety Code (NESC)
 - 10. Applicable national, state and local codes
 - 11. California Plumbing Code
 - 12. California Mechanical Code
 - 13. All governing California Codes
 - 14. All Jurisdictional Codes San Diego, CA
- B. Where there is a conflict between the code and the contract documents, the code shall have precedence only when it is more stringent than the contract documents. Items that are allowed by the code but are less stringent than those specified shall not be substituted.

1.11 PERMITS

A. The Contractors shall familiarize themselves with all requirements regarding all permits, fees, etc., and shall comply with them. All permits, licenses, inspections and arrangements required for the work shall be obtained by the Contractor at his expense. All utilities shall be installed in accordance with the local rules and regulations and all charges shall be paid by the Contractor.

1.12 MATERIALS AND EQUIPMENT MANUFACTURERS

- A. The Contractor's options in selecting materials and equipment are limited by requirements of the contract documents and governing regulations. They are not controlled by industry traditions or procedures experienced by the Contractor on previous construction projects. Materials and equipment shall be provided in accordance with the following:
 - 1. Primary Design Products: Primary design products are those products around which the project was designed in terms of capacity, performance, physical size and quality. Primary design products are indicated by use of a single manufacturer's name, model number or similar data on drawings or schedules or within the specifications. The Contractor shall provide primary design products unless substitutions are made in accordance with the following paragraphs.
 - 2. Acceptable Equivalent Substitutions: Acceptable equivalent substitutions are products of manufactures other than those listed for the primary design products. Equivalent acceptable substitutions shall meet each of the following requirements:
 - a. The product shall be manufactured by one of the acceptable manufacturers listed in the Project Manual, drawings or addenda.
 - b. The product shall meet or exceed the requirements of the contract documents in terms of quality, performance, suitability, appearance and physical characteristics.
 - c. The Contractor providing the substitution shall bear the total cost of all changes due to substitutions. These costs may include additional compensation to the Architect/Engineer for redesign and evaluation services, increased cost of work by the Owner or other Contractors, and similar considerations.
 - 3. Performance Requirements: Where the contract documents list performance requirements or describe a product or assembly generically, provide products that comply with the specific requirements indicated and that are recommended by the manufacturer for the respective application.
 - 4. Compliance with Standards, Codes and Regulations: Where the specifications require only compliance with an imposed standard, code or regulation, the Contractor has the option of selecting a product that complies with specification requirements, including the standards, codes and regulations.
- B. Proposed substitutions will be judged on the basis of quality, performance, appearance and on the governing space limitations. The reputation of the manufacturer, delivery time requirements, and the availability of repair or replacement parts may also be considered.
- C. The Architect/Engineer shall be the sole and final judge as to the suitability of substitution items.

1.13 SUBMITTALS

A. Shop Drawings, Product Data and Samples:

- 1. See Division 1 Section "Submittal Procedures". Section shall be adhered to if more stringent than the following paragraphs.
- 2. When required by other sections of this Project Manual, the Contractor shall submit shop drawings, product data or samples to the Architect/Engineer for review. Unrequired submittals will not be reviewed. A completed copy of the transmittal form included with the Project Manual shall accompany each submittal. Submittals shall be numbered consecutively. Unless otherwise noted, submit a minimum of six (6) copies of shop drawings and product data for review. A minimum of four (4) copies will be returned to the Contractor. Where samples are required, submit one (1) sample of each required item.
 - a. Shop drawings are drawings, diagrams, schedules and other data specifically prepared for this project by the Contractor, or any manufacturer, supplier or distributor to illustrate some portion of the work.
 - b. Shop drawings shall be drawn to accurate scale and of adequate size to illustrate required details. Maximum sheet size shall be 30 inches by 42 inches. For each shop drawing sheet larger than 11 inches by 17 inches, submit one drawing on reproducible media and one blue-line or photocopied print. The Architect/Engineer's action shall be indicated on the reproducible drawing and the drawing shall be returned to the Contractor.
 - c. Product data are illustrations, standard schedules, performance charts, instruction brochures, diagrams and other information furnished by the Contractor to illustrate a material, product or system for some portion of the work.
 - d. Samples are physical examples furnished by the Contractor to illustrate materials, equipment or workmanship and to establish the standards by which the work will be performed.
 - e. All Contractors shall be required to provide information concerning their part of the work needed to develop the coordination drawings required in Division 23 "Metal Ducts" and "HydrPiping".
- 3. All submittals shall clearly indicate proposed items, capacities, characteristics and details in conformance with contract documents. All equipment items shall be marked with the same item number as used on drawings or schedules. Capacities, dimensions and special features required shall be certified by the manufacturer.
- 4. Submittals shall indicate manufacturer's delivery time for the item after review by the Architect/Engineer.
- 5. The Architect/Engineer shall review or take other appropriate action upon the Contractor's submittals such as shop drawings, product data and samples, but only to determine conformance with the design concept of the work and the information given in the contract documents.
- 6. The Contractor shall not be relieved of responsibility for any deviation from the requirements of the contract documents by the Architect/Engineer's review of shop drawings, product data or samples. The Contractor shall not be relieved from responsibility for errors or omissions in the shop drawings, product data or samples by the Architect/Engineer's review of those drawings.

- 7. No portion of the work requiring submission of a shop drawing, product data or sample shall be commenced until the submittal has been reviewed by the Architect/Engineer. All such portions of the work shall be in accordance with reviewed submittals.
- 8. Provide submittals in accordance with the schedule at the end of this section. See individual project manual sections for additional requirements.
- 9. The successful contractor/supplier may, at their option, obtain DXF or AutoCad DWG electronic drawing files on CD-ROM or 3-1/2 inch disk for use in preparation of shop drawings. This information is available from Alvine and Associates upon written request. A non-refundable handling charge of \$10.00 per drawing file requested will be required at the time of receipt of the electronic files. The use of these drawing files is intended solely for the preparation of drawings as required by these contract documents. Any other use Is strictly prohibited by Copyright law. The user of these electronic drawing files assumes full responsibility for their accuracy and scale.
- B. Coordination Drawings:
 - 1. Drawings shall contain all of the following that are applicable:
 - a. Ductwork
 - b. Plumbing
 - c. HVAC piping
 - d. Bus duct
 - e. Electrical conduit 2 inches and larger
 - f. Cable tray
 - g. Fire sprinkler piping
 - h. Other areas indicated by the Contractor that involve congestion
 - 2. Complete drawings prior to submitting product data on items included in coordination drawings.
 - 3. The list below is the precedence of assigned work items for space priority in descending order. Items not listed shall have the same precedence as similar items.
 - a. Central Plant systems layouts including equipment access, maintenance space, etc.
 - b. Space designed for future utility placement.
 - c. Gravity flow plumbing waste, roof drainage, and other systems that rely upon gravity for flow.
 - d. Ductwork and appurtenances, except that external bracing shall be relocated to accommodate local interference.
 - e. Fire sprinkler piping.
 - f. Bus duct.
 - g. Cable tray with access identification 18 inches horizontal to 6 inches above tray.
 - h. Electrical conduit over 2 inches in diameter.
 - i. All HVAC and Plumbing piping
- C. Operation and Maintenance Manuals:
- 1. The Contractor shall prepare three (3) operation and maintenance manuals for the equipment furnished. Manuals shall be submitted to the Architect/Engineer for review and distribution to the Owner not less than 30 days prior to substantial completion of the project. Manuals not meeting the following requirements may be rejected by the Architect/Engineer.
- 2. Each manual shall be assembled in a three-ring binder with hard cover and plastic finish. Binders shall not exceed a 3-inch thickness. Where more than one binder is required, the manuals shall be separated into a logical grouping, i.e., "Mechanical", "Electrical", "Maintenance", "Operation", "Parts", Shop Drawings", etc. Where loose-leaf inserts are used, the sheets shall be reinforced to prevent tearing from continuous usage. Each binder shall have the following information clearly printed on its front cover:
 - a. Project name and address.
 - b. Portion of the work covered by each volume (if more than one volume in the set). Where more than one volume is required, label each volume as "Volume _____ of ____".
 - c. Name, address and telephone number of Contractor and all Sub-Contractors including night or emergency number.
- 3. Manual shall include, but shall not be limited to, the following:
 - a. A Complete Index. Contractor may submit the index to the Architect/Engineer for review prior to submittal of complete manuals if desired.
 - b. Names, Addresses and Telephone Numbers. This list shall include the manufacturer and local representative who stocks or furnishes repair parts for all items of equipment and shall be typed on a single page in front of the binder.
 - c. Startup, Operation and Shutdown Procedures. Provide a written description of procedures for startup, operation and shutdown of each mechanical item or system. This description shall include motors to start, valves to open, etc., in proper sequence, and the location of switches, starters, pushbuttons and valves. Description shall include item references or labels used in the contract documents unless otherwise instructed in advance by the Owner.
 - d. Seasonal Changeover Procedure. Provide a written description of the procedure for necessary seasonable changeover from heating to cooling and vice versa.
 - e. Equipment Accessory Schedule. Upon completion of the work, the Contractor shall furnish the Owner with a complete equipment accessory schedule listing each piece of equipment and the related size, type, number required and the manufacturer of all renewable items.
 - f. Lubrication Schedule. Provide a chart listing each piece of equipment, the proper type of oil or grease required, and recommended frequency of lubrication.
 - g. Manufacturer's Operation and Maintenance Manuals and Parts Lists.
 - h. Emergency Procedures. Provide a written description of emergency operating procedures or a list of service organizations (including addresses and telephone numbers) capable of rendering emergency services to the various parts of the system.

- i. One copy of all shop drawings and product data, clearly marked for each item furnished using the designation label specified or indicated on drawings.
- j. All manufacturers' warranty information.
- k. Normal Maintenance Schedule. Include a listing of work to be performed at various time intervals; i.e., 30, 90, 180 days and yearly.
- 1. Motor List. The list shall indicate motor location, equipment served (using labels indicated on drawings), horsepower, electrical characteristics, motor type, and RPM. Motors less than 1/2 horsepower need not be included.

PART 2 - PRODUCTS

2.1 MATERIALS

A. Unless otherwise specified, all materials and equipment shall be new, unused and undamaged. Materials and equipment shall be the current and standard designs of manufacturers regularly engaged in their production.

2.2 MATERIALS AND EQUIPMENT FURNISHED BY OTHERS

A. Where materials and equipment are indicated as furnished by others and installed or connected under this contract, it shall be the Contractor's responsibility to verify installation details and requirements.

2.3 QUANTITY OF SPECIFIED ITEMS REQUIRED

A. Wherever in these specifications an article, device or piece of equipment is referred to in the singular number, such reference shall apply to as many such articles as are shown on the drawings or required to complete the installation.

PART 3 - EXECUTION Not used. MECHANICAL SUBMITTAL SCHEDULE

END OF SECTION

SECTION 230516 - EXPANSION FITTINGS AND LOOPS FOR HVAC PIPING

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. Section Includes:
 - 1. Grooved-joint expansion joints.
 - 2. Alignment guides and anchors.

1.3 ACTION SUBMITTALS

- A. Product Data: For each type of product.
- B. Delegated-Design Submittal: For each anchor and alignment guide, including analysis data, signed and sealed by the qualified professional engineer responsible for their preparation.
 - 1. Design Calculations: Calculate requirements for thermal expansion of piping systems and for selecting and designing expansion joints, loops, and swing connections.
 - 2. Anchor Details: Detail fabrication of each anchor indicated. Show dimensions and methods of assembly and attachment to building structure.
 - 3. Schedule: Indicate type, manufacturer's number, size, material, pressure rating, end connections, and location for each expansion joint.

1.4 CLOSEOUT SUBMITTALS

A. Maintenance Data: For expansion joints to include in maintenance manuals.

1.5 QUALITY ASSURANCE

A. Welding Qualifications: Qualify procedures and personnel according to AWS D1.1/D1.1M, "Structural Welding Code - Steel."

PART 2 - PRODUCTS

2.1 PERFORMANCE REQUIREMENTS

- A. Compatibility: Products shall be suitable for piping service fluids, materials, working pressures, and temperatures.
- B. Capability: Products to absorb 200 percent of maximum axial movement between anchors.

2.2 GROOVED-JOINT EXPANSION JOINTS

- A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - 1. Anvil International, Inc.
 - 2. Shurjoint Piping Products.
 - 3. Victaulic Company.
- B. Description: Factory-assembled expansion joint made of several grooved-end pipe nipples, couplings, and grooved joints.
- C. Standard: AWWA C606, for grooved joints.
- D. Nipples: Galvanized, ASTM A 53/A 53M, Schedule 40, Type E or S, steel pipe with grooved ends.
- E. Couplings: [Five] [Seven] [10] [12] <Insert number>, flexible type for steel-pipe dimensions. Include ferrous housing sections, [Buna-N gasket suitable for diluted acid, alkaline fluids, and cold and hot water] [ethylene-propylene-diene terpolymer rubber gasket suitable for cold and hot water], and bolts and nuts.

2.3 ALIGNMENT GUIDES AND ANCHORS

- A. Anchor Materials:
 - 1. Steel Shapes and Plates: ASTM A 36/A 36M.
 - 2. Bolts and Nuts: ASME B18.10 or ASTM A 183, steel hex head.
 - 3. Washers: ASTM F 844, steel, plain, flat washers.
 - 4. Mechanical Fasteners: Insert-wedge-type stud with expansion plug anchor for use in hardened portland cement concrete, with tension and shear capacities appropriate for application.
 - a. Stud: Threaded, zinc-coated carbon steel.
 - b. Expansion Plug: Zinc-coated steel.
 - c. Washer and Nut: Zinc-coated steel.

PART 3 - EXECUTION

3.1 EXPANSION JOINT INSTALLATION

- A. Install expansion joints of sizes matching sizes of piping in which they are installed.
- B. Install grooved-joint expansion joints to grooved-end steel piping.

3.2 ALIGNMENT-GUIDE AND ANCHOR INSTALLATION

- A. Install anchors at locations to prevent stresses from exceeding those permitted by ASME B31.9 and to prevent transfer of loading and stresses to connected equipment.
- B. Anchor Attachments:
 - 1. Anchor Attachment to Steel Pipe: Attach by welding. Comply with ASME B31.9 and ASME Boiler and Pressure Vessel Code: Section IX, "Welding and Brazing Qualifications."
 - 2. Anchor Attachment to Copper Tubing: Attach with pipe hangers. Use MSS SP-69, Type 24; U bolts bolted to anchor.
- C. Fabricate and install steel anchors by welding steel shapes, plates, and bars. Comply with ASME B31.9 and AWS D1.1/D1.1M.
 - 1. Anchor Attachment to Steel Structural Members: Attach by welding.
 - 2. Anchor Attachment to Concrete Structural Members: Attach by fasteners. Follow fastener manufacturer's written instructions.
- D. Use grout to form flat bearing surfaces for guides and anchors attached to concrete.

END OF SECTION 230516

THIS PAGE INTENTIONALLY LEFT BLANK

SECTION 230517 - SLEEVES AND SLEEVE SEALS FOR HVAC PIPING

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. Section Includes:
 - 1. Sleeves.
 - 2. Sleeve-seal systems.
 - 3. Sleeve-seal fittings.
 - 4. Grout.

1.3 ACTION SUBMITTALS

A. Product Data: For each type of product indicated.

PART 2 - PRODUCTS

2.1 SLEEVES

- A. Cast-Iron Wall Pipes: Cast or fabricated of cast or ductile iron and equivalent to ductile-iron pressure pipe, with plain ends and integral waterstop unless otherwise indicated.
- B. Galvanized-Steel Wall Pipes: ASTM A 53/A 53M, Schedule 40, with plain ends and welded steel collar; zinc coated.
- C. Galvanized-Steel-Pipe Sleeves: ASTM A 53/A 53M, Type E, Grade B, Schedule 40, zinc coated, with plain ends.
- D. Galvanized-Steel-Sheet Sleeves: 0.0239-inch minimum thickness; round tube closed with welded longitudinal joint.

2.2 SLEEVE-SEAL SYSTEMS

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

- B. Basis-of-Design Product: Subject to compliance with requirements, provide or comparable product by one of the following:
 - 1. Advance Products & Systems, Inc.
 - 2. CALPICO, Inc.
 - 3. Metraflex Company (The).
 - 4. Pipeline Seal and Insulator, Inc.
 - 5. Proco Products, Inc.
- C. Description: Modular sealing-element unit, designed for field assembly, for filling annular space between piping and sleeve.
 - 1. Sealing Elements: EPDM-rubber interlocking links shaped to fit surface of pipe. Include type and number required for pipe material and size of pipe.
 - 2. Pressure Plates: Carbon steel.
 - 3. Connecting Bolts and Nuts: Carbon steel, with corrosion-resistant coating, of length required to secure pressure plates to sealing elements.

2.3 SLEEVE-SEAL FITTINGS

- A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
- B. Basis-of-Design Product: Subject to compliance with requirements, provide or comparable product by one of the following:
 - 1. Presealed Systems.
- C. Description: Manufactured plastic, sleeve-type, waterstop assembly made for imbedding in concrete slab or wall. Unit has plastic or rubber waterstop collar with center opening to match piping OD.

2.4 GROUT

- A. Standard: ASTM C 1107/C 1107M, Grade B, post-hardening and volume-adjusting, dry, hydraulic-cement grout.
- B. Characteristics: Nonshrink; recommended for interior and exterior applications.
- C. Design Mix: 5000-psi, 28-day compressive strength.
- D. Packaging: Premixed and factory packaged.

PART 3 - EXECUTION

3.1 SLEEVE INSTALLATION

- A. Install sleeves for piping passing through penetrations in floors, partitions, roofs, and walls.
- B. For sleeves that will have sleeve-seal system installed, select sleeves of size large enough to provide 1-inch annular clear space between piping and concrete slabs and walls.
 - 1. Sleeves are not required for core-drilled holes.
- C. Install sleeves in concrete floors, concrete roof slabs, and concrete walls as new slabs and walls are constructed.
 - 1. Permanent sleeves are not required for holes in slabs formed by molded-PE or PP sleeves.
 - 2. Cut sleeves to length for mounting flush with both surfaces.
 - a. Exception: Extend sleeves installed in floors of mechanical equipment areas or other wet areas 2 inches above finished floor level.
 - 3. Using grout, seal the space outside of sleeves in slabs and walls without sleeveseal system.
- D. Install sleeves for pipes passing through interior partitions.
 - 1. Cut sleeves to length for mounting flush with both surfaces.
 - 2. Install sleeves that are large enough to provide 1/4-inch annular clear space between sleeve and pipe or pipe insulation.
 - 3. Seal annular space between sleeve and piping or piping insulation; use joint sealants appropriate for size, depth, and location of joint. Comply with requirements for sealants specified in Section 079200 "Joint Sealants."
- E. Fire-Barrier Penetrations: Maintain indicated fire rating of walls, partitions, ceilings, and floors at pipe penetrations. Seal pipe penetrations with firestop materials. Comply with requirements for firestopping specified in Section 078413 "Penetration Firestopping."

3.2 SLEEVE-SEAL-SYSTEM INSTALLATION

- A. Install sleeve-seal systems in sleeves in exterior concrete walls and slabs-on-grade at service piping entries into building.
- B. Select type, size, and number of sealing elements required for piping material and size and for sleeve ID or hole size. Position piping in center of sleeve. Center piping in penetration, assemble sleeve-seal system components, and install in annular space between piping and sleeve. Tighten bolts against pressure plates that cause sealing elements to expand and make a watertight seal.

3.3 SLEEVE-SEAL-FITTING INSTALLATION

- A. Install sleeve-seal fittings in new walls and slabs as they are constructed.
- B. Assemble fitting components of length to be flush with both surfaces of concrete slabs and walls. Position waterstop flange to be centered in concrete slab or wall.
- C. Secure nailing flanges to concrete forms.
- D. Using grout, seal the space around outside of sleeve-seal fittings.

3.4 SLEEVE AND SLEEVE-SEAL SCHEDULE

- A. Use sleeves and sleeve seals for the following piping-penetration applications:
 - 1. Exterior Concrete Walls above Grade:
 - a. Piping Smaller Than NPS 6: Sleeve-seal fittings.
 - b. Piping NPS 6 and Larger: Galvanized-steel-pipe sleeves.
 - 2. Exterior Concrete Walls below Grade:
 - a. Piping Smaller Than NPS 6: Sleeve-seal fittings.
 - 1) Select sleeve size to allow for 1-inch annular clear space between piping and sleeve for installing sleeve-seal system.
 - b. Piping NPS 6 and Larger: Galvanized-steel-pipe sleeves with sleeve-seal system.
 - 1) Select sleeve size to allow for 1-inch annular clear space between piping and sleeve for installing sleeve-seal system.
 - 3. Concrete Slabs-on-Grade:
 - a. Piping Smaller Than NPS 6: Sleeve-seal fittings.
 - 1) Select sleeve size to allow for 1-inch annular clear space between piping and sleeve for installing sleeve-seal system.
 - b. Piping NPS 6 and Larger: Galvanized-steel-pipe sleeves with sleeve-seal system.
 - 1) Select sleeve size to allow for 1-inch annular clear space between piping and sleeve for installing sleeve-seal system.
 - 4. Concrete Slabs above Grade:
 - a. Piping Smaller Than NPS 6: Galvanized-steel-pipe sleeves.
 - b. Piping NPS 6 and Larger: Galvanized-steel-pipe sleeves.

- 5. Interior Partitions:
 - Piping Smaller Than NPS 6:Galvanized-steel-pipe sleeves.Piping NPS 6 and Larger:Galvanized-steel-sheet sleeves. a.
 - b.

END OF SECTION 230517

THIS PAGE INTENTIONALLY LEFT BLANK

ECTION 230519 - METERS AND GAGES FOR HVAC PIPING

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. Section Includes:
 - 1. Liquid-in-glass thermometers.
 - 2. Thermowells.
 - 3. Gage attachments.
 - 4. Test plugs.
 - 5. Test-plug kits.
 - 6. Vortex-shedding flowmeters.
 - 7. Ultrasonic, thermal-energy meters.

1.3 ACTION SUBMITTALS

- A. Product Data: For each type of product indicated.
- B. Wiring Diagrams: For power, signal, and control wiring.

1.4 INFORMATIONAL SUBMITTALS

A. Product Certificates: For each type of meter and gage, from manufacturer.

1.5 CLOSEOUT SUBMITTALS

A. Operation and Maintenance Data: For meters and gages to include in operation and maintenance manuals.

PART 2 - PRODUCTS

2.1 LIQUID-IN-GLASS THERMOMETERS

A. Metal-Case, Industrial-Style, Liquid-in-Glass Thermometers:

- 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - a. Flo Fab Inc.
 - b. Miljoco Corporation.
 - c. Palmer Wahl Instrumentation Group.
 - d. Tel-Tru Manufacturing Company.
 - e. Trerice, H. O. Co.
 - f. Weiss Instruments, Inc.
 - g. Winters Instruments U.S.
- 2. Standard: ASME B40.200.
- 3. Case: Cast aluminum; 7-inch nominal size unless otherwise indicated.
- 4. Case Form: Adjustable angle unless otherwise indicated.
- 5. Tube: Glass with magnifying lens and blue or red organic liquid.
- 6. Tube Background: Nonreflective aluminum with permanently etched scale markings graduated in deg F.
- 7. Window: Glass.
- 8. Stem: Aluminum and of length to suit installation.
 - a. Design for Air-Duct Installation: With ventilated shroud.
 - b. Design for Thermowell Installation: Bare stem.
- 9. Connector: 1-1/4 inches, with ASME B1.1 screw threads.
- 10. Accuracy: Plus or minus 1 percent of scale range or one scale division, to a maximum of 1.5 percent of scale range.

2.2 DUCT-THERMOMETER MOUNTING BRACKETS

A. Description: Flanged bracket with screw holes, for attachment to air duct and made to hold thermometer stem.

2.3 THERMOWELLS

- A. Thermowells:
 - 1. Standard: ASME B40.200.
 - 2. Description: Pressure-tight, socket-type fitting made for insertion into piping tee fitting.
 - 3. Material for Use with Copper Tubing: CNR.
 - 4. Material for Use with Steel Piping: CRES CSA.
 - 5. Type: Stepped shank unless straight or tapered shank is indicated.
 - 6. External Threads: NPS 1/2, NPS 3/4, or NPS 1, ASME B1.20.1 pipe threads.
 - 7. Internal Threads: 1/2, 3/4, and 1 inch, with ASME B1.1 screw threads.
 - 8. Bore: Diameter required to match thermometer bulb or stem.
 - 9. Insertion Length: Length required to match thermometer bulb or stem.
 - 10. Lagging Extension: Include on thermowells for insulated piping and tubing.
 - 11. Bushings: For converting size of thermowell's internal screw thread to size of thermometer connection.

B. Heat-Transfer Medium: Mixture of graphite and glycerin.

2.4 GAGE ATTACHMENTS

- A. Snubbers: ASME B40.100, brass; with NPS 1/4 or NPS 1/2, ASME B1.20.1 pipe threads and piston -type surge-dampening device. Include extension for use on insulated piping.
- B. Siphons: Loop-shaped section of stainless-steel pipe with NPS 1/4 or NPS 1/2 pipe threads.
- C. Valves: Brass or stainless-steel needle, with NPS 1/4 or NPS 1/2, ASME B1.20.1 pipe threads.

2.5 TEST PLUGS

- A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - 1. Flow Design, Inc.
 - 2. Miljoco Corporation.
 - 3. National Meter, Inc.
 - 4. Peterson Equipment Co., Inc.
 - 5. Sisco Manufacturing Company, Inc.
 - 6. Trerice, H. O. Co.
 - 7. Watts Regulator Co.; a div. of Watts Water Technologies, Inc.
 - 8. Weiss Instruments, Inc.
- B. Description: Test-station fitting made for insertion into piping tee fitting.
- C. Body: Brass or stainless steel with core inserts and gasketed and threaded cap. Include extended stem on units to be installed in insulated piping.
- D. Thread Size: NPS 1/2, ASME B1.20.1 pipe thread.
- E. Minimum Pressure and Temperature Rating: 500 psig at 200 deg F.
- F. Core Inserts: Chlorosulfonated polyethylene synthetic and EPDM self-sealing rubber.

2.6 TEST-PLUG KITS

- A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
- B. Basis-of-Design Product: Subject to compliance with requirements, provide or comparable product by one of the following:
 - 1. Flow Design, Inc.
 - 2. Miljoco Corporation.

- 3. National Meter, Inc.
- 4. Peterson Equipment Co., Inc.
- 5. Sisco Manufacturing Company, Inc.
- 6. Trerice, H. O. Co.
- 7. Watts Regulator Co.; a div. of Watts Water Technologies, Inc.
- 8. Weiss Instruments, Inc.
- C. Furnish one test-plug kit(s) containing two thermometer(s), one pressure gage and adapter, and carrying case. Thermometer sensing elements, pressure gage, and adapter probes shall be of diameter to fit test plugs and of length to project into piping.
- D. Low-Range Thermometer: Small, bimetallic insertion type with 1- to 2-inchdiameter dial and tapered-end sensing element. Dial range shall be at least 25 to 125 deg F.
- E. Pressure Gage: Small, Bourdon-tube insertion type with 2- to 3-inch- diameter dial and probe. Dial range shall be at least 0 to 200 psig.
- F. Carrying Case: Metal or plastic, with formed instrument padding.

2.7 FLOWMETERS

- A. Vortex-Shedding Flowmeters:
 - 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - 2. Basis-of-Design Product: Subject to compliance with requirements, provide or comparable product by one of the following:
 - a. Onicon or Equal.
 - 3. Description: Flowmeter with sensor and indicator.
 - 4. Flow Range: Sensor and indicator shall cover operating range of equipment or system served.
 - 5. Sensor: Inline type; for installing between pipe flanges and measuring flow directly in gallons per minute.
 - a. Design: Flow obstruction device, vortex-measurement type for gas steam and liquids.
 - b. Construction: Stainless-steel body, with integral transmitter and direct-reading scale.
 - c. Minimum Pressure Rating: 1000 psig.
 - d. Minimum Temperature Rating: 500 deg F.
 - e. Integral Transformer: For low-voltage power operation.
 - 6. Indicator: Hand-held meter; either an integral part of sensor or a separate meter.
 - 7. Accuracy: Plus or minus 0.25 percent for liquids and 0.75 percent for gases.
 - 8. Display: Shows rate of flow, with register to indicate total volume in gallons.
 - 9. Operating Instructions: Include complete instructions with each flowmeter.

PART 3 - EXECUTION

3.1 INSTALLATION

- A. Install thermowells with socket extending one-third of pipe diameter and in vertical position in piping tees.
- B. Install thermowells of sizes required to match thermometer connectors. Include bushings if required to match sizes.
- C. Install thermowells with extension on insulated piping.
- D. Fill thermowells with heat-transfer medium.
- E. Install duct-thermometer mounting brackets in walls of ducts. Attach to duct with screws.
- F. Install valve and snubber in piping for each pressure gage for fluids (except steam).
- G. Install valve and syphon fitting in piping for each pressure gage for steam.
- H. Install test plugs in piping tees.
- I. Assemble and install connections, tubing, and accessories between flow-measuring elements and flowmeters according to manufacturer's written instructions.
- J. Install flowmeter elements in accessible positions in piping systems.
- K. Install differential-pressure-type flowmeter elements, with at least minimum straight lengths of pipe, upstream and downstream from element according to manufacturer's written instructions.
- L. Install permanent indicators on walls or brackets in accessible and readable positions.
- M. Install connection fittings in accessible locations for attachment to portable indicators.
- N. Mount thermal-energy meters on wall if accessible; if not, provide brackets to support meters.
- O. Install thermometers in the following locations:
 - 1. Two inlets and two outlets of each chiller.
 - 2. Inlet and outlet of each thermal-storage tank.

3.2 CONNECTIONS

- A. Install meters and gages adjacent to machines and equipment to allow service and maintenance of meters, gages, machines, and equipment.
- B. Connect flowmeter-system elements to meters.

- C. Connect flowmeter transmitters to meters.
- D. Connect thermal-energy meter transmitters to meters.

3.3 ADJUSTING

- A. After installation, calibrate meters according to manufacturer's written instructions.
- B. Adjust faces of meters and gages to proper angle for best visibility.

3.4 THERMOMETER SCHEDULE

- A. Thermometers at inlets and outlets of each chiller shall be the following:
 - 1. Industrial-style, liquid-in-glass type.
 - 2. Test plug with chlorosulfonated polyethylene synthetic EPDM self-sealing rubber inserts.

3.5 THERMOMETER SCALE-RANGE SCHEDULE

- A. Scale Range for Chilled-Water Piping: 0 to 100 deg F.
- B. Scale Range for Condenser-Water Piping: 0 to 100 deg F.

3.6 PRESSURE-GAGE SCHEDULE

- A. Pressure gages at inlet and outlet of each chiller chilled-water and condenser-water connection shall be the following:
 - 1. Liquid-filled, direct -mounted, metal case.
- B. Pressure gages at suction and discharge of each pump shall be one of the following:
 - 1. Liquid-filled, direct -mounted, metal case.

3.7 PRESSURE-GAGE SCALE-RANGE SCHEDULE

- A. Scale Range for Chilled-Water Piping: 0 to 160 psi.
- B. Scale Range for Condenser-Water Piping: 0 to 160 psi.
- C. Scale Range for Heating, Hot-Water Piping: 0 to 160 psi.

3.8 FLOWMETER SCHEDULE - SEE PLANS FOR EXACT MODELS.

A. Flowmeters for Chilled-Water Piping: Vortex-shedding type.

B. Flowmeters for Condenser-Water Piping:

Vortex-shedding type.

END OF SECTION 230519

THIS PAGE INTENTIONALLY LEFT BLANK

SECTION 230523 - GENERAL-DUTY VALVES FOR HVAC PIPING

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. Section Includes:
 - 1. Bronze ball valves.
 - 2. Iron, single-flange butterfly valves.
 - 3. High-performance butterfly valves.
 - 4. Bronze swing check valves.
 - 5. Iron swing check valves.
 - 6. Iron swing check valves with closure control.
 - 7. Iron, plate-type check valves.
- B. Related Sections:
 - 1. Section 230553 "Identification for HVAC Piping and Equipment" for valve tags and schedules.

1.3 DEFINITIONS

- A. CWP: Cold working pressure.
- B. EPDM: Ethylene propylene copolymer rubber.
- C. NBR: Acrylonitrile-butadiene, Buna-N, or nitrile rubber.
- D. NRS: Nonrising stem.
- E. OS&Y: Outside screw and yoke.
- F. RS: Rising stem.
- G. SWP: Steam working pressure.

1.4 ACTION SUBMITTALS

A. Product Data: For each type of valve indicated.

1.5 QUALITY ASSURANCE

- A. Source Limitations for Valves: Obtain each type of valve from single source from single manufacturer.
- B. ASME Compliance:
 - 1. ASME B16.10 and ASME B16.34 for ferrous valve dimensions and design criteria.
 - 2. ASME B31.1 for power piping valves.
 - 3. ASME B31.9 for building services piping valves.

1.6 DELIVERY, STORAGE, AND HANDLING

- A. Prepare valves for shipping as follows:
 - 1. Protect internal parts against rust and corrosion.
 - 2. Protect threads, flange faces, grooves, and weld ends.
 - 3. Set angle, gate, and globe valves closed to prevent rattling.
 - 4. Set ball and plug valves open to minimize exposure of functional surfaces.
 - 5. Set butterfly valves closed or slightly open.
 - 6. Block check valves in either closed or open position.
- B. Use the following precautions during storage:
 - 1. Maintain valve end protection.
 - 2. Store valves indoors and maintain at higher than ambient dew point temperature. If outdoor storage is necessary, store valves off the ground in watertight enclosures.
- C. Use sling to handle large valves; rig sling to avoid damage to exposed parts. Do not use handwheels or stems as lifting or rigging points.

PART 2 - PRODUCTS

2.1 GENERAL REQUIREMENTS FOR VALVES

- A. Refer to HVAC valve schedule articles for applications of valves.
- B. Valve Pressure and Temperature Ratings: Not less than indicated and as required for system pressures and temperatures.
- C. Valve Sizes: Same as upstream piping unless otherwise indicated.
- D. Valve Actuator Types:
 - 1. Gear Actuator: For quarter-turn valves NPS 8 and larger.
 - 2. Handwheel: For valves other than quarter-turn types.
 - 3. Handlever: For quarter-turn valves NPS 6 and smaller.

- E. Valves in Insulated Piping: With 2-inch stem extensions and the following features:
 - 1. Gate Valves: With rising stem.
 - 2. Ball Valves: With extended operating handle of non-thermal-conductive material, and protective sleeve that allows operation of valve without breaking the vapor seal or disturbing insulation.
 - 3. Butterfly Valves: With extended neck.
- F. Valve-End Connections:
 - 1. Flanged: With flanges according to ASME B16.1 for iron valves.
 - 2. Solder Joint: With sockets according to ASME B16.18.
 - 3. Threaded: With threads according to ASME B1.20.1.
- G. Valve Bypass and Drain Connections: MSS SP-45.

2.2 BRONZE BALL VALVES

- A. Two-Piece, Full-Port, Bronze Ball Valves with Stainless-Steel Trim:
 - 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - a. Conbraco Industries, Inc.; Apollo Valves.
 - b. Crane Co.; Crane Valve Group; Crane Valves.
 - c. NIBCO INC.
 - 2. Description:
 - a. Standard: MSS SP-110.
 - b. SWP Rating: 150 psig.
 - c. CWP Rating: 600 psig.
 - d. Body Design: Two piece.
 - e. Body Material: Bronze.
 - f. Ends: Threaded.
 - g. Seats: PTFE or TFE.
 - h. Stem: Stainless steel.
 - i. Ball: Stainless steel, vented.
 - j. Port: Full.

2.3 IRON, SINGLE-FLANGE BUTTERFLY VALVES

- A. 150 CWP, Iron, Single-Flange Butterfly Valves with EPDM Seat and Stainless-Steel Disc:
 - 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - a. Bray Controls; a division of Bray International.

- 2. Description:
 - a. Standard: MSS SP-67, Type I.
 - b. CWP Rating: 150 psig.
 - c. Body Design: Lug type; suitable for bidirectional dead-end service at rated pressure without use of downstream flange.
 - d. Body Material: ASTM A 126, cast iron or ASTM A 536, ductile iron.
 - e. Seat: EPDM.
 - f. Stem: One- or two-piece stainless steel.

2.4 BRONZE SWING CHECK VALVES

- A. Class 125, Bronze Swing Check Valves with Bronze Disc:
 - 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - a. Crane Co.; Crane Valve Group; Crane Valves.
 - b. Crane Co.; Crane Valve Group; Jenkins Valves.
 - c. Crane Co.; Crane Valve Group; Stockham Division.
 - d. NIBCO INC.
 - 2. Description:
 - a. Standard: MSS SP-80, Type 3.
 - b. CWP Rating: 200 psig.
 - c. Body Design: Horizontal flow.
 - d. Body Material: ASTM B 62, bronze.
 - e. Ends: Threaded.
 - f. Disc: Bronze.
- B. Class 150, Bronze Swing Check Valves with Bronze Disc:
 - 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - a. Crane Co.; Crane Valve Group; Crane Valves.
 - b. Crane Co.; Crane Valve Group; Jenkins Valves.
 - c. Crane Co.; Crane Valve Group; Stockham Division.
 - d. NIBCO INC.
 - 2. Description:
 - a. Standard: MSS SP-80, Type 3.
 - b. CWP Rating: 300 psig.
 - c. Body Design: Horizontal flow.
 - d. Body Material: ASTM B 62, bronze.
 - e. Ends: Threaded.
 - f. Disc: Bronze.

2.5 IRON, PLATE-TYPE CHECK VALVES

- A. Class 125, Iron, Dual-Plate Check Valves with Metal Seat:
 - 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - a. Crane Co.; Crane Valve Group; Crane Valves.
 - 2. Description:
 - a. Standard: API 594.
 - b. NPS 2-1/2 to NPS 12, CWP Rating: 200 psig.
 - c. NPS 14 to NPS 24, CWP Rating: 150 psig.
 - d. Body Design: Wafer, spring-loaded plates.
 - e. Body Material: ASTM A 126, gray iron.
 - f. Seat: Bronze.
- B. Class 150, Iron, Dual-Plate Check Valves with Metal Seat:
 - 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - a. Crane Co.; Crane Valve Group; Crane Valves.
 - 2. Description:
 - a. Standard: API 594.
 - b. NPS 2-1/2 to NPS 12, CWP Rating: 300 psig.
 - c. NPS 14 to NPS 24, CWP Rating: 250 psig.
 - d. Body Design: Wafer, spring-loaded plates.
 - e. Body Material: ASTM A 395/A 395M or ASTM A 536, ductile iron.
 - f. Seat: Bronze.
- C. Class 150, Iron, Dual-Plate Check Valves with Resilient Seat:
 - 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - a. APCO Willamette Valve and Primer Corporation.
 - b. Val-Matic Valve & Manufacturing Corp.
 - 2. Description:
 - a. Standard: API 594.
 - b. NPS 2-1/2 to NPS 12, CWP Rating: 300 psig.
 - c. NPS 14 to NPS 24, CWP Rating: 250 psig.
 - d. Body Design: Wafer, spring-loaded plates.
 - e. Body Material: ASTM A 395/A 395M or ASTM A 536, ductile iron.
 - f. Seat: EPDM.

PART 3 - EXECUTION

3.1 EXAMINATION

- A. Examine valve interior for cleanliness, freedom from foreign matter, and corrosion. Remove special packing materials, such as blocks, used to prevent disc movement during shipping and handling.
- B. Operate valves in positions from fully open to fully closed. Examine guides and seats made accessible by such operations.
- C. Examine threads on valve and mating pipe for form and cleanliness.
- D. Examine mating flange faces for conditions that might cause leakage. Check bolting for proper size, length, and material. Verify that gasket is of proper size, that its material composition is suitable for service, and that it is free from defects and damage.
- E. Do not attempt to repair defective valves; replace with new valves.

3.2 VALVE INSTALLATION

- A. Install valves with unions or flanges at each piece of equipment arranged to allow service, maintenance, and equipment removal without system shutdown.
- B. Locate valves for easy access and provide separate support where necessary.
- C. Install valves in horizontal piping with stem at or above center of pipe.
- D. Install valves in position to allow full stem movement.
- E. Install check valves for proper direction of flow and as follows:
 - 1. Swing Check Valves: In horizontal position with hinge pin level.
 - 2. Center-Guided and Plate-Type Check Valves: In horizontal or vertical position, between flanges.

3.3 ADJUSTING

A. Adjust or replace valve packing after piping systems have been tested and put into service but before final adjusting and balancing. Replace valves if persistent leaking occurs.

3.4 GENERAL REQUIREMENTS FOR VALVE APPLICATIONS

- A. If valve applications are not indicated, use the following:
 - 1. Shutoff Service: Ball, butterfly valves.
 - 2. Butterfly Valve Dead-End Service: Single-flange (lug) type.

- 3. Throttling Service except Steam: Ball or butterfly valves.
- 4. Pump-Discharge Check Valves:
 - a. NPS 2 and Smaller: Bronze swing check valves with bronze disc.
 - b. NPS 2-1/2 and Larger: Iron swing check valves with lever and weight or with spring or iron, center-guided, metal -seat check valves.
- B. If valves with specified SWP classes or CWP ratings are not available, the same types of valves with higher SWP classes or CWP ratings may be substituted.
- C. Select valves, except wafer types, with the following end connections:
 - 1. For Copper Tubing, NPS 2 and Smaller: Threaded ends except where solderjoint valve-end option is indicated in valve schedules below.
 - 2. For Copper Tubing, NPS 2-1/2 to NPS 4: Flanged ends except where threaded valve-end option is indicated in valve schedules below.
 - 3. For Copper Tubing, NPS 5 and Larger: Flanged ends.
 - 4. For Steel Piping, NPS 2 and Smaller: Threaded ends.
 - 5. For Steel Piping, NPS 2-1/2 to NPS 4: Flanged ends except where threaded valve-end option is indicated in valve schedules below.
 - 6. For Steel Piping, NPS 5 and Larger: Flanged ends.

3.5 CHILLED-WATER VALVE SCHEDULE

- A. Pipe NPS 2 and Smaller:
 - 1. Bronze Valves: May be provided with solder-joint ends instead of threaded ends.
 - 2. Bronze Swing Check Valves: Class 150, bronze disc.
- B. Pipe NPS 2-1/2 and Larger:
 - 1. Iron Valves, NPS 2-1/2 to NPS 4: May be provided with threaded ends instead of flanged ends.
 - 2. Iron, Single-Flange Butterfly Valves, NPS 2-1/2 to NPS 12: 200 CWP, EPDM seat, stainless-steel disc.
 - 3. Iron, Plate-Type Check Valves: Class 150; dual plate; metal seat.

3.6 CONDENSER-WATER VALVE SCHEDULE

- A. Pipe NPS 2 and Smaller:
 - 1. BronzeValves: May be provided with solder-joint ends instead of threaded ends.
 - 2. Bronze Swing Check Valves: Class 125, bronze disc.
- B. Pipe NPS 2-1/2 and Larger:
 - 1. Iron Valves, NPS 2-1/2 to NPS 4: May be provided with threaded ends instead of flanged ends.

- 2. Iron, Single-Flange Butterfly Valves, NPS 14 to NPS 24: 150 CWP, EPDM seat, stainless-steel disc.
- 3. Iron, Plate-Type Check Valves: Class 150; dual plate; metal seat.

END OF SECTION 230523

SECTION 230529 - HANGERS AND SUPPORTS FOR HVAC PIPING AND EQUIPMENT

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. Section Includes:
 - 1. Metal pipe hangers and supports.
 - 2. Trapeze pipe hangers.
 - 3. Metal framing systems.
 - 4. Thermal-hanger shield inserts.
 - 5. Fastener systems.
 - 6. Pipe stands.
 - 7. Equipment supports.
- B. Related Sections:
 - 1. Section 230548 "Vibration and Seismic Controls for HVAC" for vibration isolation devices.

1.3 DEFINITIONS

A. MSS: Manufacturers Standardization Society of The Valve and Fittings Industry Inc.

1.4 PERFORMANCE REQUIREMENTS

- A. Delegated Design: Design trapeze pipe hangers and equipment supports, including comprehensive engineering analysis by a qualified professional engineer, using performance requirements and design criteria indicated.
- B. Systems: OSHPD Approved OPM 43 or 52 only as described on the plans.
- C. Structural Performance: Hangers and supports for HVAC piping and equipment shall withstand the effects of gravity loads and stresses within limits and under conditions indicated according to ASCE/SEI 7.
 - 1. Design supports for multiple pipes, including pipe stands, capable of supporting combined weight of supported systems, system contents, and test water.
 - 2. Design equipment supports capable of supporting combined operating weight of supported equipment and connected systems and components.

3. Design seismic-restraint hangers and supports for piping and equipment and obtain approval from authorities having jurisdiction.

1.5 ACTION SUBMITTALS

- A. Product Data: For each type of product indicated.
- B. Shop Drawings: Signed and sealed by a qualified professional engineer. Show fabrication and installation details and include calculations for the following; include Product Data for components:
 - 1. Trapeze pipe hangers.
 - 2. Metal framing systems.
 - 3. Equipment supports.
- C. Delegated-Design Submittal: For trapeze hangers indicated to comply with performance requirements and design criteria, including analysis data signed and sealed by the qualified professional engineer responsible for their preparation.
 - 1. Detail fabrication and assembly of trapeze hangers.
 - 2. Design Calculations: Calculate requirements for designing trapeze hangers.

1.6 QUALITY ASSURANCE

- A. Structural Steel Welding Qualifications: Qualify procedures and personnel according to AWS D1.1/D1.1M, "Structural Welding Code Steel."
- B. Pipe Welding Qualifications: Qualify procedures and operators according to ASME Boiler and Pressure Vessel Code.

PART 2 - PRODUCTS

2.1 METAL PIPE HANGERS AND SUPPORTS

- A. Carbon-Steel Pipe Hangers and Supports:
 - 1. Description: MSS SP-58, Types 1 through 58, factory-fabricated components.
 - 2. Galvanized Metallic Coatings: Pregalvanized or hot dipped.
 - 3. Nonmetallic Coatings: Plastic coating, jacket, or liner.
 - 4. Padded Hangers: Hanger with fiberglass or other pipe insulation pad or cushion to support bearing surface of piping.
 - 5. Hanger Rods: Continuous-thread rod, nuts, and washer made of carbon steel.

2.2 TRAPEZE PIPE HANGERS

A. Description: MSS SP-69, Type 59, shop- or field-fabricated pipe-support assembly made from structural carbon-steel shapes with MSS SP-58 carbon-steel hanger rods, nuts, saddles, and U-bolts.

2.3 METAL FRAMING SYSTEMS

- A. MFMA Manufacturer Metal Framing Systems:
 - 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - a. Allied Tube & Conduit.
 - b. Cooper B-Line, Inc.
 - c. Flex-Strut Inc.
 - d. GS Metals Corp.
 - e. Thomas & Betts Corporation.
 - f. Unistrut Corporation; Tyco International, Ltd.
 - g. Wesanco, Inc.
 - 2. Description: Shop- or field-fabricated pipe-support assembly for supporting multiple parallel pipes.
 - 3. Standard: MFMA-4.
 - 4. Channels: Continuous slotted steel channel with inturned lips.
 - 5. Channel Nuts: Formed or stamped steel nuts or other devices designed to fit into channel slot and, when tightened, prevent slipping along channel.
 - 6. Hanger Rods: Continuous-thread rod, nuts, and washer made of carbon steel.
 - 7. Metallic Coating: Electroplated zinc.
 - 8. Paint Coating: Vinyl Vinyl alkyd Epoxy Polyester Acrylic Amine Alkyd.
 - 9. Plastic Coating: PVC.
 - 10. Combination Coating: .

2.4 THERMAL-HANGER SHIELD INSERTS

- A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - 1. Carpenter & Paterson, Inc.
 - 2. Clement Support Services.
 - 3. ERICO International Corporation.
 - 4. National Pipe Hanger Corporation.
 - 5. PHS Industries, Inc.
 - 6. Pipe Shields, Inc.; a subsidiary of Piping Technology & Products, Inc.
 - 7. Piping Technology & Products, Inc.
 - 8. Rilco Manufacturing Co., Inc.
 - 9. Value Engineered Products, Inc.

- B. Insulation-Insert Material for Cold Piping: ASTM C 552, Type II cellular glass with 100-psig minimum compressive strength and vapor barrier.
- C. Insulation-Insert Material for Hot Piping: Water-repellent treated, ASTM C 533, Type I calcium silicate with 100-psig minimum compressive strength.
- D. For Trapeze or Clamped Systems: Insert and shield shall cover entire circumference of pipe.
- E. For Clevis or Band Hangers: Insert and shield shall cover lower 180 degrees of pipe.
- F. Insert Length: Extend 2 inches beyond sheet metal shield for piping operating below ambient air temperature.

2.5 FASTENER SYSTEMS

A. Mechanical-Expansion Anchors: Insert-wedge-type, zinc-coated steel anchors, for use in hardened portland cement concrete; with pull-out, tension, and shear capacities appropriate for supported loads and building materials where used.

2.6 PIPE STANDS

- A. General Requirements for Pipe Stands: Shop- or field-fabricated assemblies made of manufactured corrosion-resistant components to support roof-mounted piping.
- B. Compact Pipe Stand: One-piece plastic unit with integral-rod roller, pipe clamps, or V-shaped cradle to support pipe, for roof installation without membrane penetration.
- C. Low-Type, Single-Pipe Stand: One-piece stainless-steel base unit with plastic roller, for roof installation without membrane penetration.
- D. High-Type, Single-Pipe Stand:
 - 1. Description: Assembly of base, vertical and horizontal members, and pipe support, for roof installation without membrane penetration.
 - 2. Base: Stainless steel.
 - 3. Vertical Members: Two or more cadmium-plated-steel or stainless-steel, continuous-thread rods.
 - 4. Horizontal Member: Cadmium-plated-steel or stainless-steel rod with plastic or stainless-steel, roller-type pipe support.
- E. High-Type, Multiple-Pipe Stand:
 - 1. Description: Assembly of bases, vertical and horizontal members, and pipe supports, for roof installation without membrane penetration.
 - 2. Bases: One or more; plastic.
 - 3. Vertical Members: Two or more protective-coated-steel channels.
 - 4. Horizontal Member: Protective-coated-steel channel.
 - 5. Pipe Supports: Galvanized-steel, clevis-type pipe hangers.

2.7 EQUIPMENT SUPPORTS

A. Description: Welded, shop- or field-fabricated equipment support made from structural carbon-steel shapes.

2.8 MISCELLANEOUS MATERIALS

- A. Structural Steel: ASTM A 36/A 36M, carbon-steel plates, shapes, and bars; black and galvanized.
- B. Grout: ASTM C 1107, factory-mixed and -packaged, dry, hydraulic-cement, nonshrink and nonmetallic grout; suitable for interior and exterior applications.
 - 1. Properties: Nonstaining, noncorrosive, and nongaseous.
 - 2. Design Mix: 5000-psi, 28-day compressive strength.

PART 3 - EXECUTION

3.1 HANGER AND SUPPORT INSTALLATION - OPM 43 or 52 ONLY

- A. Metal Pipe-Hanger Installation: Comply with MSS SP-69 and MSS SP-89. Install hangers, supports, clamps, and attachments as required to properly support piping from the building structure.
- B. Metal Trapeze Pipe-Hanger Installation: Comply with MSS SP-69 and MSS SP-89. Arrange for grouping of parallel runs of horizontal piping, and support together on field-fabricated trapeze pipe hangers.
 - 1. Pipes of Various Sizes: Support together and space trapezes for smallest pipe size or install intermediate supports for smaller diameter pipes as specified for individual pipe hangers.
 - 2. Field fabricate from ASTM A 36/A 36M, carbon-steel shapes selected for loads being supported. Weld steel according to AWS D1.1/D1.1M.
- C. Metal Framing System Installation: Arrange for grouping of parallel runs of piping, and support together on field-assembled metal framing systems.
- D. Thermal-Hanger Shield Installation: Install in pipe hanger or shield for insulated piping.
- E. Fastener System Installation:
 - 1. Install mechanical-expansion anchors in concrete after concrete is placed and completely cured. Install fasteners according to manufacturer's written instructions.
- F. Pipe Stand Installation:

- 1. Pipe Stand Types except Curb-Mounted Type: Assemble components and mount on smooth roof surface. Do not penetrate roof membrane.
- 2. Curb-Mounted-Type Pipe Stands: Assemble components or fabricate pipe stand and mount on permanent, stationary roof curb. See Section 077200 "Roof Accessories" for curbs.
- G. Install hangers and supports complete with necessary attachments, inserts, bolts, rods, nuts, washers, and other accessories.
- H. Equipment Support Installation: Fabricate from welded-structural-steel shapes.
- I. Install hangers and supports to allow controlled thermal and seismic movement of piping systems, to permit freedom of movement between pipe anchors, and to facilitate action of expansion joints, expansion loops, expansion bends, and similar units.
- J. Install lateral bracing with pipe hangers and supports to prevent swaying.
- K. Install building attachments within concrete slabs or attach to structural steel. Install additional attachments at concentrated loads, including valves, flanges, and strainers, NPS 2-1/2 and larger and at changes in direction of piping. Install concrete inserts before concrete is placed; fasten inserts to forms and install reinforcing bars through openings at top of inserts.
- L. Load Distribution: Install hangers and supports so that piping live and dead loads and stresses from movement will not be transmitted to connected equipment.
- M. Pipe Slopes: Install hangers and supports to provide indicated pipe slopes and to not exceed maximum pipe deflections allowed by ASME B31.9 for building services piping.
- N. Insulated Piping:
 - 1. Attach clamps and spacers to piping.
 - a. Piping Operating above Ambient Air Temperature: Clamp may project through insulation.
 - b. Piping Operating below Ambient Air Temperature: Use thermal-hanger shield insert with clamp sized to match OD of insert.
 - c. Do not exceed pipe stress limits allowed by ASME B31.9 for building services piping.
 - 2. Install MSS SP-58, Type 39, protection saddles if insulation without vapor barrier is indicated. Fill interior voids with insulation that matches adjoining insulation.
 - a. Option: Thermal-hanger shield inserts may be used. Include steel weight-distribution plate for pipe NPS 4 and larger if pipe is installed on rollers.
 - 3. Install MSS SP-58, Type 40, protective shields on cold piping with vapor barrier. Shields shall span an arc of 180 degrees.

- a. Option: Thermal-hanger shield inserts may be used. Include steel weight-distribution plate for pipe NPS 4 and larger if pipe is installed on rollers.
- 4. Shield Dimensions for Pipe: Not less than the following:
 - a. NPS 1/4 to NPS 3-1/2: 12 inches long and 0.048 inch thick.
 - b. NPS 4: 12 inches long and 0.06 inchthick.
 - c. NPS 5 and NPS 6: 18 inches long and 0.06 inch thick.
 - d. NPS 8 to NPS 14: 24 inches long and 0.075 inch thick.
 - e. NPS 16 to NPS 24: 24 inches long and 0.105 inch thick.
- 5. Pipes NPS 8 and Larger: Include wood or reinforced calcium-silicate-insulation inserts of length at least as long as protective shield.
- 6. Thermal-Hanger Shields: Install with insulation same thickness as piping insulation.

3.2 EQUIPMENT SUPPORTS

- A. Fabricate structural-steel stands to suspend equipment from structure overhead or to support equipment above floor.
- B. Grouting: Place grout under supports for equipment and make bearing surface smooth.
- C. Provide lateral bracing, to prevent swaying, for equipment supports.

3.3 METAL FABRICATIONS

- A. Cut, drill, and fit miscellaneous metal fabrications for trapeze pipe hangers and equipment supports.
- B. Fit exposed connections together to form hairline joints. Field weld connections that cannot be shop welded because of shipping size limitations.
- C. Field Welding: Comply with AWS D1.1/D1.1M procedures for shielded, metal arc welding; appearance and quality of welds; and methods used in correcting welding work; and with the following:
 - 1. Use materials and methods that minimize distortion and develop strength and corrosion resistance of base metals.
 - 2. Obtain fusion without undercut or overlap.
 - 3. Remove welding flux immediately.
 - 4. Finish welds at exposed connections so no roughness shows after finishing and so contours of welded surfaces match adjacent contours.

3.4 ADJUSTING

- A. Hanger Adjustments: Adjust hangers to distribute loads equally on attachments and to achieve indicated slope of pipe.
- B. Trim excess length of continuous-thread hanger and support rods to 1-1/2 inches.

3.5 PAINTING

- A. Touchup: Clean field welds and abraded areas of shop paint. Paint exposed areas immediately after erecting hangers and supports. Use same materials as used for shop painting. Comply with SSPC-PA 1 requirements for touching up field-painted surfaces.
 - 1. Apply paint by brush or spray to provide a minimum dry film thickness of 2.0 mils.
- B. Galvanized Surfaces: Clean welds, bolted connections, and abraded areas and apply galvanizing-repair paint to comply with ASTM A 780.

3.6 HANGER AND SUPPORT SCHEDULE

- A. Specific hanger and support requirements are in Sections specifying piping systems and equipment.
- B. Comply with MSS SP-69 for pipe-hanger selections and applications that are not specified in piping system Sections.
- C. Use hangers and supports with galvanized metallic coatings for piping and equipment that will not have field-applied finish.
- D. Use nonmetallic coatings on attachments for electrolytic protection where attachments are in direct contact with copper tubing.
- E. Use carbon-steel pipe hangers and supports metal trapeze pipe hangers and metal framing systems and attachments for general service applications.
- F. Use stainless-steel pipe hangers and stainless-steel attachments for hostile environment applications.
- G. Use padded hangers for piping that is subject to scratching.
- H. Use thermal-hanger shield inserts for insulated piping and tubing.
- I. Horizontal-Piping Hangers and Supports: Unless otherwise indicated and except as specified in piping system Sections, install the following types:
 - 1. Adjustable, Steel Clevis Hangers (MSS Type 1): For suspension of noninsulated or insulated, stationary pipes NPS 1/2 to NPS 30.
- 2. Yoke-Type Pipe Clamps (MSS Type 2): For suspension of up to 1050 deg F, pipes NPS 4 to NPS 24, requiring up to 4 inches of insulation.
- 3. Carbon- or Alloy-Steel, Double-Bolt Pipe Clamps (MSS Type 3): For suspension of pipes NPS 3/4 to NPS 36, requiring clamp flexibility and up to 4 inches of insulation.
- 4. Steel Pipe Clamps (MSS Type 4): For suspension of cold and hot pipes NPS 1/2 to NPS 24 if little or no insulation is required.
- 5. Pipe Hangers (MSS Type 5): For suspension of pipes NPS 1/2 to NPS 4, to allow off-center closure for hanger installation before pipe erection.
- 6. Adjustable, Swivel Split- or Solid-Ring Hangers (MSS Type 6): For suspension of noninsulated, stationary pipes NPS 3/4 to NPS 8.
- 7. Adjustable, Steel Band Hangers (MSS Type 7): For suspension of noninsulated, stationary pipes NPS 1/2 to NPS 8.
- 8. Adjustable Band Hangers (MSS Type 9): For suspension of noninsulated, stationary pipes NPS 1/2 to NPS 8.
- 9. Adjustable, Swivel-Ring Band Hangers (MSS Type 10): For suspension of noninsulated, stationary pipes NPS 1/2 to NPS 8.
- 10. Split Pipe Ring with or without Turnbuckle Hangers (MSS Type 11): For suspension of noninsulated, stationary pipes NPS 3/8 to NPS 8.
- 11. Extension Hinged or Two-Bolt Split Pipe Clamps (MSS Type 12): For suspension of noninsulated, stationary pipes NPS 3/8 to NPS 3.
- 12. U-Bolts (MSS Type 24): For support of heavy pipes NPS 1/2 to NPS 30.
- 13. Clips (MSS Type 26): For support of insulated pipes not subject to expansion or contraction.
- 14. Pipe Saddle Supports (MSS Type 36): For support of pipes NPS 4 to NPS 36, with steel-pipe base stanchion support and cast-iron floor flange or carbon-steel plate.
- 15. Pipe Stanchion Saddles (MSS Type 37): For support of pipes NPS 4 to NPS 36, with steel-pipe base stanchion support and cast-iron floor flange or carbon-steel plate, and with U-bolt to retain pipe.
- 16. Adjustable Pipe Saddle Supports (MSS Type 38): For stanchion-type support for pipes NPS 2-1/2 to NPS 36 if vertical adjustment is required, with steel-pipe base stanchion support and cast-iron floor flange.
- 17. Single-Pipe Rolls (MSS Type 41): For suspension of pipes NPS 1 to NPS 30, from two rods if longitudinal movement caused by expansion and contraction might occur.
- Adjustable Roller Hangers (MSS Type 43): For suspension of pipes NPS 2-1/2 to NPS 24, from single rod if horizontal movement caused by expansion and contraction might occur.
- 19. Complete Pipe Rolls (MSS Type 44): For support of pipes NPS 2 to NPS 42 if longitudinal movement caused by expansion and contraction might occur but vertical adjustment is not necessary.
- 20. Pipe Roll and Plate Units (MSS Type 45): For support of pipes NPS 2 to NPS 24 if small horizontal movement caused by expansion and contraction might occur and vertical adjustment is not necessary.
- 21. Adjustable Pipe Roll and Base Units (MSS Type 46): For support of pipes NPS 2 to NPS 30 if vertical and lateral adjustment during installation might be required in addition to expansion and contraction.
- J. Hanger-Rod Attachments: Unless otherwise indicated and except as specified in piping system Sections, install the following types:

- 1. Steel Turnbuckles (MSS Type 13): For adjustment up to 6 inches for heavy loads.
- 2. Steel Clevises (MSS Type 14): For 120 to 450 deg F piping installations.
- 3. Swivel Turnbuckles (MSS Type 15): For use with MSS Type 11, split pipe rings.
- 4. Malleable-Iron Sockets (MSS Type 16): For attaching hanger rods to various types of building attachments.
- 5. Steel Weldless Eye Nuts (MSS Type 17): For 120 to 450 deg F piping installations.
- K. Building Attachments: Unless otherwise indicated and except as specified in piping system Sections, install the following types:
 - 1. Steel or Malleable Concrete Inserts (MSS Type 18): For upper attachment to suspend pipe hangers from concrete ceiling.
 - 2. Top-Beam C-Clamps (MSS Type 19): For use under roof installations with barjoist construction, to attach to top flange of structural shape.
 - 3. Side-Beam or Channel Clamps (MSS Type 20): For attaching to bottom flange of beams, channels, or angles.
 - 4. Center-Beam Clamps (MSS Type 21): For attaching to center of bottom flange of beams.
 - 5. Welded Beam Attachments (MSS Type 22): For attaching to bottom of beams if loads are considerable and rod sizes are large.
 - 6. C-Clamps (MSS Type 23): For structural shapes.
 - 7. Top-Beam Clamps (MSS Type 25): For top of beams if hanger rod is required tangent to flange edge.
 - 8. Side-Beam Clamps (MSS Type 27): For bottom of steel I-beams.
 - 9. Steel-Beam Clamps with Eye Nuts (MSS Type 28): For attaching to bottom of steel I-beams for heavy loads.
 - 10. Linked-Steel Clamps with Eye Nuts (MSS Type 29): For attaching to bottom of steel I-beams for heavy loads, with link extensions.
 - 11. Malleable-Beam Clamps with Extension Pieces (MSS Type 30): For attaching to structural steel.
 - 12. Welded-Steel Brackets: For support of pipes from below or for suspending from above by using clip and rod. Use one of the following for indicated loads:
 - a. Light (MSS Type 31): 750 lb.
 - b. Medium (MSS Type 32): 1500 lb.
 - c. Heavy (MSS Type 33): 3000 lb.
 - 13. Side-Beam Brackets (MSS Type 34): For sides of steel or wooden beams.
 - 14. Plate Lugs (MSS Type 57): For attaching to steel beams if flexibility at beam is required.
 - 15. Horizontal Travelers (MSS Type 58): For supporting piping systems subject to linear horizontal movement where headroom is limited.
- L. Saddles and Shields: Unless otherwise indicated and except as specified in piping system Sections, install the following types:
 - 1. Steel-Pipe-Covering Protection Saddles (MSS Type 39): To fill interior voids with insulation that matches adjoining insulation.

- 2. Protection Shields (MSS Type 40): Of length recommended in writing by manufacturer to prevent crushing insulation.
- 3. Thermal-Hanger Shield Inserts: For supporting insulated pipe.
- M. Comply with MSS SP-69 for trapeze pipe-hanger selections and applications that are not specified in piping system Sections.
- N. Comply with MFMA-103 for metal framing system selections and applications that are not specified in piping system Sections.

END OF SECTION 230529

THIS PAGE INTENTIONALLY LEFT BLANK

SECTION 230548 - VIBRATION AND SEISMIC CONTROLS FOR HVAC

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. Section Includes:
 - 1. Resilient pipe guides.
 - 2. Elastomeric hangers.
 - 3. Spring hangers.
 - 4. Snubbers.
 - 5. Restraint cables.
 - 6. Seismic-restraint accessories.
 - 7. Mechanical anchor bolts.
- B. Related Requirements:
 - 1. Section 210548 "Vibration and Seismic Controls for Fire Suppression" for devices for fire-suppression equipment and systems.
 - 2. Section 220548 "Vibration and Seismic Controls for Plumbing" for devices for plumbing equipment and systems.

1.3 DEFINITIONS

- A. IBC: International Building Code.
- B. ICC-ES: ICC-Evaluation Service.
- C. OSHPD: Office of Statewide Health Planning & Development (for the State of California).

1.4 ACTION SUBMITTALS

- A. Product Data: For each type of product.
 - 1. Include rated load, rated deflection, and overload capacity for each vibration isolation device.
 - 2. Illustrate and indicate style, material, strength, fastening provision, and finish for each type and size of vibration isolation device and seismic-restraint component required.

- a. Tabulate types and sizes of seismic restraints, complete with report numbers and rated strength in tension and shear as evaluated by an evaluation service member of ICC-ES.
- b. Annotate to indicate application of each product submitted and compliance with requirements.
- 3. Interlocking Snubbers: Include ratings for horizontal, vertical, and combined loads.
- B. Shop Drawings:
 - 1. Detail fabrication and assembly of equipment bases. Detail fabrication including anchorages and attachments to structure and to supported equipment. Include adjustable motor bases, rails, and frames for equipment mounting.
 - 2. Vibration Isolation Base Details: Detail fabrication including anchorages and attachments to structure and to supported equipment. Include adjustable motor bases, rails, and frames for equipment mounting.
- C. Delegated-Design Submittal: For each vibration isolation and seismic-restraint device.
 - 1. Include design calculations and details for selecting vibration isolators, seismic restraints, and vibration isolation bases complying with performance requirements, design criteria, and analysis data signed and sealed by the qualified professional engineer responsible for their preparation.
 - 2. Design Calculations: Calculate static and dynamic loading due to equipment weight, operation, and seismic and wind forces required to select vibration isolators and seismic and wind restraints and for designing vibration isolation bases.
 - a. Coordinate design calculations with wind load calculations required for equipment mounted outdoors. Comply with requirements in other Sections for equipment mounted outdoors.
 - 3. Riser Supports: Include riser diagrams and calculations showing anticipated expansion and contraction at each support point, initial and final loads on building structure, spring deflection changes, and seismic loads. Include certification that riser system was examined for excessive stress and that none exists.
 - 4. Seismic- and Wind-Restraint Details:
 - a. Design Analysis: To support selection and arrangement of seismic and wind restraints. Include calculations of combined tensile and shear loads.
 - b. Details: Indicate fabrication and arrangement. Detail attachments of restraints to the restrained items and to the structure. Show attachment locations, methods, and spacings. Identify components, list their strengths, and indicate directions and values of forces transmitted to the structure during seismic events. Indicate association with vibration isolation devices.

- c. Coordinate seismic-restraint and vibration isolation details with windrestraint details required for equipment mounted outdoors. Comply with requirements in other Sections for equipment mounted outdoors.
- d. Preapproval and Evaluation Documentation: By an evaluation service member of ICC-ES, showing maximum ratings of restraint items and the basis for approval (tests or calculations).

1.5 INFORMATIONAL SUBMITTALS

- A. Coordination Drawings: Show coordination of vibration isolation device installation and seismic bracing for HVAC piping and equipment with other systems and equipment in the vicinity, including other supports and restraints, if any.
- B. Qualification Data: For professional engineer and testing agency.
- C. Welding certificates.

1.6 CLOSEOUT SUBMITTALS

A. Operation and Maintenance Data: For to include in operation and maintenance manuals.

1.7 QUALITY ASSURANCE

- A. Testing Agency Qualifications: An independent agency, with the experience and capability to conduct the testing indicated, that is an NRTL as defined by OSHA in 29 CFR 1910.7 and that is acceptable to authorities having jurisdiction.
- B. Comply with seismic-restraint requirements in the IBC unless requirements in this Section are more stringent.
- C. Welding Qualifications: Qualify procedures and personnel according to AWS D1.1/D1.1M, "Structural Welding Code Steel."
- D. Seismic-restraint devices shall have horizontal and vertical load testing and analysis and shall bear anchorage preapproval OPA number from OSHPD, preapproval by ICC-ES, or preapproval by another agency acceptable to authorities having jurisdiction, showing maximum seismic-restraint ratings. Ratings based on independent testing are preferred to ratings based on calculations. If preapproved ratings are unavailable, submittals based on independent testing are preferred. Calculations (including combining shear and tensile loads) to support seismic-restraint designs must be signed and sealed by a qualified professional engineer.

PART 2 - PRODUCTS

2.1 PERFORMANCE REQUIREMENTS

- A. Wind-Restraint Loading:
 - 1. Basic Wind Speed: Forces determined per ASCE 7-05 Chapter 6.
 - 2. Building Classification Category: III.
 - 3. Minimum 10 lb/sq. ft. multiplied by maximum area of HVAC component projected on vertical plane normal to wind direction, and 45 degrees either side of normal.
- B. Seismic-Restraint Loading:
 - 1. Site Class as Defined in the ACSE/SEI: C.
 - 2. Assigned Seismic Use Group or Building Category as Defined in the ACSE/SEI:
 - a. Component Importance Factor: 1.5.
 - 3. Seismic Design Category as Defined in the ASCE/SEI 7-05: D.
 - 4. Rated strengths, features, and applications shall be as defined in reports by an evaluation service member of ICC-ES.
 - a. Structural Safety Factor: Allowable strength in tension, shear, and pullout force of components shall be at least four times the maximum seismic forces to which they are subjected.

2.2 PIPE-RISER RESILIENT SUPPORT

- A. Description: All-directional, acoustical pipe anchor consisting of two steel tubes separated by a minimum 1/2-inch- thick neoprene .
 - 1. Vertical-Limit Stops: Steel and neoprene vertical-limit stops arranged to prevent vertical travel in both directions.
 - 2. Maximum Load Per Support: 500 psigon isolation material providing equal isolation in all directions.

2.3 **RESILIENT PIPE GUIDES**

- A. Description: Telescopic arrangement of two steel tubes or post and sleeve arrangement separated by a minimum 1/2-inch- thick neoprene.
 - 1. Factory-Set Height Guide with Shear Pin: Shear pin shall be removable and reinsertable to allow for selection of pipe movement. Guides shall be capable of motion to meet location requirements.

2.4 ELASTOMERIC HANGERS

- A. Elastomeric Mount in a Steel Frame with Upper and Lower Steel Hanger Rods: .
 - 1. Manufacturers: Subject to compliance with requirements, provide products by the following:
 - 2. Basis-of-Design Product: Subject to compliance with requirements, provide or comparable product by one of the following:
 - a. Ace Mountings Co., Inc.
 - b. California Dynamics Corporation.
 - c. Isolation Technology, Inc.
 - d. Kinetics Noise Control, Inc.
 - e. Mason Industries, Inc.
 - f. Vibration Eliminator Co., Inc.
 - g. Vibration Mountings & Controls, Inc.
 - 3. Frame: Steel, fabricated with a connection for an upper threaded hanger rod and an opening on the underside to allow for a maximum of 30 degrees of angular lower hanger-rod misalignment without binding or reducing isolation efficiency.
 - 4. Dampening Element: Molded, oil-resistant rubber, neoprene, or other elastomeric material with a projecting bushing for the underside opening preventing steel to steel contact.

2.5 SPRING HANGERS

- A. Combination Coil-Spring and Elastomeric-Insert Hanger with Spring and Insert in Compression: .
 - 1. Manufacturers: Subject to compliance with requirements, provide products by the following:
 - 2. Basis-of-Design Product: Subject to compliance with requirements, provide or comparable product by one of the following:
 - a. Ace Mountings Co., Inc.
 - b. California Dynamics Corporation.
 - c. Kinetics Noise Control, Inc.
 - d. Mason Industries, Inc.
 - e. Vibration Eliminator Co., Inc.
 - f. Vibration Isolation.
 - g. Vibration Mountings & Controls, Inc.
 - 3. Frame: Steel, fabricated for connection to threaded hanger rods and to allow for a maximum of 30 degrees of angular hanger-rod misalignment without binding or reducing isolation efficiency.
 - 4. Outside Spring Diameter: Not less than 80 percent of the compressed height of the spring at rated load.
 - 5. Minimum Additional Travel: 50 percent of the required deflection at rated load.
 - 6. Lateral Stiffness: More than 80 percent of rated vertical stiffness.

- 7. Overload Capacity: Support 200 percent of rated load, fully compressed, without deformation or failure.
- 8. Elastomeric Element: Molded, oil-resistant rubber or neoprene. Steel-washerreinforced cup to support spring and bushing projecting through bottom of frame.
- 9. Adjustable Vertical Stop: Steel washer with neoprene washer "up-stop" on lower threaded rod.
- 10. Self-centering hanger-rod cap to ensure concentricity between hanger rod and support spring coil.

2.6 SNUBBERS

- A. Manufacturers: Subject to compliance with requirements, provide products by the following:
- B. Basis-of-Design Product: Subject to compliance with requirements, provide or comparable product by one of the following:
 - 1. Kinetics Noise Control, Inc.
 - 2. Mason Industries, Inc.
 - 3. Vibration Mountings & Controls, Inc.
- C. Description: Factory fabricated using welded structural-steel shapes and plates, anchor bolts, and replaceable resilient isolation washers and bushings.
 - 1. Anchor bolts for attaching to concrete shall be seismic-rated, drill-in, and studwedge or female-wedge type.
 - 2. Resilient Isolation Washers and Bushings: Oil- and water-resistant neoprene.
 - 3. Maximum 1/4-inch air gap, and minimum 1/4-inch- thick resilient cushion.

2.7 RESTRAINT CHANNEL BRACINGS

- A. Manufacturers: Subject to compliance with requirements, provide products by the following:
- B. Basis-of-Design Product: Subject to compliance with requirements, provide or comparable product by one of the following:
 - 1. Cooper B-Line, Inc.
 - 2. Hilti, Inc.
 - 3. Mason Industries, Inc.
 - 4. Unistrut.
- C. Description: MFMA-4, shop- or field-fabricated bracing assembly made of slotted steel channels with accessories for attachment to braced component at one end and to building structure at the other end and other matching components and with corrosion-resistant coating; rated in tension, compression, and torsion forces.

2.8 RESTRAINT CABLES

- A. Manufacturers: Subject to compliance with requirements, provide products by the following:
- B. Basis-of-Design Product: Subject to compliance with requirements, provide or comparable product by one of the following:
 - 1. Kinetics Noise Control, Inc.
 - 2. Loos & Co., Inc.
 - 3. Vibration Mountings & Controls, Inc.
- C. Restraint Cables: ASTM A 492 stainless-steel cables. End connections made of steel assemblies with thimbles, brackets, swivel, and bolts designed for restraining cable service; with a minimum of two clamping bolts for cable engagement.

2.9 SEISMIC-RESTRAINT ACCESSORIES

- A. Manufacturers: Subject to compliance with requirements, provide products by the following:
- B. Basis-of-Design Product: Subject to compliance with requirements, provide or comparable product by one of the following:
 - 1. Cooper B-Line, Inc.
 - 2. Kinetics Noise Control, Inc.
 - 3. Mason Industries, Inc.
 - 4. TOLCO.
- C. Hanger-Rod Stiffener: Reinforcing steel angle clamped to hanger rod.
- D. Hinged and Swivel Brace Attachments: Multifunctional steel connectors for attaching hangers to rigid channel bracings and restraint cables.
- E. Bushings for Floor-Mounted Equipment Anchor Bolts: Neoprene bushings designed for rigid equipment mountings, and matched to type and size of anchor bolts and studs.
- F. Bushing Assemblies for Wall-Mounted Equipment Anchorage: Assemblies of neoprene elements and steel sleeves designed for rigid equipment mountings, and matched to type and size of attachment devices used.
- G. Resilient Isolation Washers and Bushings: One-piece, molded, oil- and waterresistant neoprene, with a flat washer face.

2.10 MECHANICAL ANCHOR BOLTS

A. Manufacturers: Subject to compliance with requirements, provide products by the following:

- B. Basis-of-Design Product: Subject to compliance with requirements, provide or comparable product by one of the following:
 - 1. Cooper B-Line, Inc.
 - 2. Hilti, Inc.
 - 3. Kinetics Noise Control, Inc.
 - 4. Mason Industries, Inc.
- Mechanical Anchor Bolts: Drilled-in and stud-wedge or female-wedge type in zinccoated steel for interior applications and stainless steel for exterior applications. Select anchor bolts with strength required for anchor and as tested according to ASTM E 488.

PART 3 - EXECUTION

3.1 EXAMINATION

- A. Examine areas and equipment to receive vibration isolation and seismic- and windcontrol devices for compliance with requirements for installation tolerances and other conditions affecting performance of the Work.
- B. Examine roughing-in of reinforcement and cast-in-place anchors to verify actual locations before installation.
- C. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 APPLICATIONS

- A. Multiple Pipe Supports: Secure pipes to trapeze member with clamps approved for application by an evaluation service member of ICC-ES.
- B. Hanger-Rod Stiffeners: Install hanger-rod stiffeners where indicated or scheduled on Drawings to receive them and where required to prevent buckling of hanger rods due to seismic forces.
- C. Strength of Support and Seismic-Restraint Assemblies: Where not indicated, select sizes of components so strength is adequate to carry present and future static and seismic loads within specified loading limits.

3.3 VIBRATION CONTROL AND SEISMIC-RESTRAINT DEVICE INSTALLATION

- A. Coordinate the location of embedded connection hardware with supported equipment attachment and mounting points and with requirements for concrete reinforcement and formwork specified in Section 033000 "Cast-in-Place Concrete."
- B. Installation of vibration isolators must not cause any change of position of equipment, piping, or ductwork resulting in stresses or misalignment.

- C. Equipment Restraints:
 - 1. Install seismic snubbers on HVAC equipment mounted on vibration isolators. Locate snubbers as close as possible to vibration isolators and bolt to equipment base and supporting structure.
 - 2. Install resilient bolt isolation washers on equipment anchor bolts where clearance between anchor and adjacent surface exceeds 0.125 inch.
 - 3. Install seismic-restraint devices using methods approved by an evaluation service member of ICC-ES that provides required submittals for component.
- D. Piping Restraints:
 - 1. Comply with requirements in MSS SP-127.
 - 2. Space lateral supports a maximum of 40 feet o.c., and longitudinal supports a maximum of 80 feet o.c.
 - 3. Brace a change of direction longer than 12 feet.
- E. Install cables so they do not bend across edges of adjacent equipment or building structure.
- F. Install seismic-restraint devices using methods approved by an evaluation service member of ICC-ES that provides required submittals for component.
- G. Install bushing assemblies for anchor bolts for floor-mounted equipment, arranged to provide resilient media between anchor bolt and mounting hole in concrete base.
- H. Install bushing assemblies for mounting bolts for wall-mounted equipment, arranged to provide resilient media where equipment or equipment-mounting channels are attached to wall.
- I. Attachment to Structure: If specific attachment is not indicated, anchor bracing to structure at flanges of beams, at upper truss chords of bar joists, or at concrete members.
- J. Drilled-in Anchors:
 - 1. Identify position of reinforcing steel and other embedded items prior to drilling holes for anchors. Do not damage existing reinforcing or embedded items during coring or drilling. Notify the structural engineer if reinforcing steel or other embedded items are encountered during drilling. Locate and avoid prestressed tendons, electrical and telecommunications conduit, and gas lines.
 - 2. Do not drill holes in concrete or masonry until concrete, mortar, or grout has achieved full design strength.
 - 3. Wedge Anchors: Protect threads from damage during anchor installation. Heavy-duty sleeve anchors shall be installed with sleeve fully engaged in the structural element to which anchor is to be fastened.
 - 4. Adhesive Anchors: Clean holes to remove loose material and drilling dust prior to installation of adhesive. Place adhesive in holes proceeding from the bottom of the hole and progressing toward the surface in such a manner as to avoid introduction of air pockets in the adhesive.
 - 5. Set anchors to manufacturer's recommended torque, using a torque wrench.

6. Install zinc-coated steel anchors for interior and stainless-steel anchors for exterior applications.

3.4 ACCOMMODATION OF DIFFERENTIAL SEISMIC MOTION

A. Install flexible connections in piping where they cross seismic joints, where adjacent sections or branches are supported by different structural elements, and where the connections terminate with connection to equipment that is anchored to a different structural element from the one supporting the connections as they approach equipment. Comply with requirements in Section 232113 "Hydronic Piping" for piping flexible connections.

3.5 FIELD QUALITY CONTROL

- A. Testing Agency: Engage a qualified testing agency to perform tests and inspections.
- B. Tests and Inspections:
 - 1. Provide evidence of recent calibration of test equipment by a testing agency acceptable to authorities having jurisdiction.
 - 2. Schedule test with Owner, through Architect, before connecting anchorage device to restrained component (unless postconnection testing has been approved), and with at least seven days' advance notice.
 - 3. Obtain Architect's approval before transmitting test loads to structure. Provide temporary load-spreading members.
 - 4. Test at least four of each type and size of installed anchors and fasteners selected by Architect.
 - 5. Test to 90 percent of rated proof load of device.
 - 6. Measure isolator restraint clearance.
 - 7. Measure isolator deflection.
 - 8. Verify snubber minimum clearances.
 - 9. Test and adjust restrained-air-spring isolator controls and safeties.
- C. Remove and replace malfunctioning units and retest as specified above.
- D. Prepare test and inspection reports.

3.6 ADJUSTING

- A. Adjust isolators after piping system is at operating weight.
- B. Adjust limit stops on restrained-spring isolators to mount equipment at normal operating height. After equipment installation is complete, adjust limit stops so they are out of contact during normal operation.

END OF SECTION 230548

SECTION 230553 - IDENTIFICATION FOR HVAC PIPING AND EQUIPMENT

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. Section Includes:
 - 1. Equipment labels.
 - 2. Warning signs and labels.
 - 3. Pipe labels.
 - 4. Duct labels.
 - 5. Valve tags.
 - 6. Warning tags.

1.3 ACTION SUBMITTALS

- A. Product Data: For each type of product indicated.
- B. Samples: For color, letter style, and graphic representation required for each identification material and device.
- C. Equipment Label Schedule: Include a listing of all equipment to be labeled with the proposed content for each label.
- D. Valve numbering scheme.
- E. Valve Schedules: For each piping system to include in maintenance manuals.

1.4 COORDINATION

- A. Coordinate installation of identifying devices with completion of covering and painting of surfaces where devices are to be applied.
- B. Coordinate installation of identifying devices with locations of access panels and doors.
- C. Install identifying devices before installing acoustical ceilings and similar concealment.

PART 2 - PRODUCTS

2.1 EQUIPMENT LABELS

- A. Plastic Labels for Equipment:
 - 1. Material and Thickness: Multilayer, multicolor, plastic labels for mechanical engraving, 1/8 inch thick, and having predrilled holes for attachment hardware.
 - 2. Letter Color: White.
 - 3. Background Color: Black.
 - 4. Maximum Temperature: Able to withstand temperatures up to 160 deg F.
 - 5. Minimum Label Size: Length and width vary for required label content, but not less than 2-1/2 by 3/4 inch.
 - 6. Minimum Letter Size: 1/4 inch for name of units if viewing distance is less than 24 inches, 1/2 inch for viewing distances up to 72 inches, and proportionately larger lettering for greater viewing distances. Include secondary lettering two-thirds to three-fourths the size of principal lettering.
 - 7. Fasteners: Stainless-steel self-tapping screws.
 - 8. Adhesive: Contact-type permanent adhesive, compatible with label and with substrate.
- B. Label Content: Include equipment's Drawing designation or unique equipment number, Drawing numbers where equipment is indicated (plans, details, and schedules), plus the Specification Section number and title where equipment is specified.
- C. Equipment Label Schedule: For each item of equipment to be labeled, on 8-1/2-by-11-inch bond paper. Tabulate equipment identification number and identify Drawing numbers where equipment is indicated (plans, details, and schedules), plus the Specification Section number and title where equipment is specified. Equipment schedule shall be included in operation and maintenance data.

2.2 WARNING SIGNS AND LABELS

- A. Material and Thickness: Multilayer, multicolor, plastic labels for mechanical engraving, 1/8 inch thick, and having predrilled holes for attachment hardware.
- B. Letter Color: White.
- C. Background Color: Red.
- D. Maximum Temperature: Able to withstand temperatures up to 160 deg F.
- E. Minimum Label Size: Length and width vary for required label content, but not less than 2-1/2 by 3/4 inch.

- F. Minimum Letter Size: 1/4 inch for name of units if viewing distance is less than 24 inches, 1/2 inch for viewing distances up to 72 inches, and proportionately larger lettering for greater viewing distances. Include secondary lettering two-thirds to three-fourths the size of principal lettering.
- G. Fasteners: Stainless-steel self-tapping screws.
- H. Label Content: Include caution and warning information, plus emergency notification instructions.

2.3 PIPE LABELS

- A. General Requirements for Manufactured Pipe Labels: Preprinted, color-coded, with lettering indicating service, and showing flow direction.
- B. Pretensioned Pipe Labels: Precoiled, semirigid plastic formed to cover full circumference of pipe and to attach to pipe without fasteners or adhesive.
- C. Pipe Label Contents: Include identification of piping service using same designations or abbreviations as used on Drawings, pipe size, and an arrow indicating flow direction.
 - 1. Flow-Direction Arrows: Integral with piping system service lettering to accommodate both directions, or as separate unit on each pipe label to indicate flow direction.
 - 2. Lettering Size: At least 1-1/2 incheshigh.

2.4 DUCT LABELS

- A. Material and Thickness: Multilayer, multicolor, plastic labels for mechanical engraving, 1/8 inch thick, and having predrilled holes for attachment hardware.
- B. Letter Color: Black.
- C. Background Color: Yellow.
- D. Maximum Temperature: Able to withstand temperatures up to 160 deg F.
- E. Minimum Label Size: Length and width vary for required label content, but not less than 2-1/2 by 3/4 inch.
- F. Minimum Letter Size: 1/4 inch for name of units if viewing distance is less than 24 inches, 1/2 inch for viewing distances up to 72 inches, and proportionately larger lettering for greater viewing distances. Include secondary lettering two-thirds to three-fourths the size of principal lettering.
- G. Fasteners: Stainless-steel self-tapping screws.
- H. Duct Label Contents: Include identification of duct service using same designations or abbreviations as used on Drawings, duct size, and an arrow indicating flow direction.

- 1. Flow-Direction Arrows: Integral with duct system service lettering to accommodate both directions, or as separate unit on each duct label to indicate flow direction.
- 2. Lettering Size: At least 1-1/2 incheshigh.

2.5 VALVE TAGS

- A. Valve Tags: Stamped or engraved with 1/4-inch letters for piping system abbreviation and 1/2-inch numbers.
 - 1. Tag Material: Brass, 0.032-inch minimum thickness, and having predrilled or stamped holes for attachment hardware.
 - 2. Fasteners: Brass wire-link or beaded chain; or S-hook .
- B. Valve Schedules: For each piping system, on 8-1/2-by-11-inch bond paper. Tabulate valve number, piping system, system abbreviation (as shown on valve tag), location of valve (room or space), normal-operating position (open, closed, or modulating), and variations for identification. Mark valves for emergency shutoff and similar special uses.
 - 1. Valve-tag schedule shall be included in operation and maintenance data.

2.6 WARNING TAGS

- A. Warning Tags: Preprinted or partially preprinted, accident-prevention tags, of plasticized card stock with matte finish suitable for writing.
 - 1. Size: 3 by 5-1/4 inches minimum.
 - 2. Fasteners: Reinforced grommet and wire or string.
 - 3. Nomenclature: Large-size primary caption such as "DANGER," "CAUTION," or "DO NOT OPERATE."
 - 4. Color: Yellow background with black lettering.

PART 3 - EXECUTION

3.1 PREPARATION

A. Clean piping and equipment surfaces of substances that could impair bond of identification devices, including dirt, oil, grease, release agents, and incompatible primers, paints, and encapsulants.

3.2 EQUIPMENT LABEL INSTALLATION

- A. Install or permanently fasten labels on each major item of mechanical equipment.
- B. Locate equipment labels where accessible and visible.

3.3 PIPE LABEL INSTALLATION

- A. Locate pipe labels where piping is exposed or above accessible ceilings in finished spaces; machine rooms; accessible maintenance spaces such as shafts, tunnels, and plenums; and exterior exposed locations as follows:
 - 1. Near each valve and control device.
 - 2. Near each branch connection, excluding short takeoffs for fixtures and terminal units. Where flow pattern is not obvious, mark each pipe at branch.
 - 3. Near penetrations through walls, floors, ceilings, and inaccessible enclosures.
 - 4. At access doors, manholes, and similar access points that permit view of concealed piping.
 - 5. Near major equipment items and other points of origination and termination.
 - 6. Spaced at maximum intervals of 50 feet along each run. Reduce intervals to 25 feet in areas of congested piping and equipment.
 - 7. On piping above removable acoustical ceilings. Omit intermediately spaced labels.
- B. Pipe Label Color Schedule:
 - 1. Chilled-Water Piping:
 - a. Background Color: Blue.
 - b. Letter Color: Black White.
 - 2. Condenser-Water Piping:
 - a. Background Color: Blue.
 - b. Letter Color: White.

3.4 DUCT LABEL INSTALLATION

- A. Install self-adhesive duct labels with permanent adhesive on air ducts in the following color codes:
 - 1. Green: For exhaust-, outside-, relief-, return-, and mixed-air ducts.
 - 2. ASME A13.1 Colors and Designs: For hazardous material exhaust.
- B. Locate labels near points where ducts enter into concealed spaces and at maximum intervals of 50 feet in each space where ducts are exposed or concealed by removable ceiling system.

3.5 VALVE-TAG INSTALLATION

A. Install tags on valves and control devices in piping systems, except check valves; valves within factory-fabricated equipment units; shutoff valves; faucets; convenience and lawn-watering hose connections; and HVAC terminal devices and similar roughing-in connections of end-use fixtures and units. List tagged valves in a valve schedule.

- B. Valve-Tag Application Schedule: Tag valves according to size, shape, and color scheme and with captions similar to those indicated in the following subparagraphs:
 - 1. Valve-Tag Size and Shape:
 - a. Chilled Water: 1-1/2 inches, round.
 - b. Condenser Water: 1-1/2 inches, round.
 - 2. Valve-Tag Color:
 - a. Chilled Water: Natural.
 - b. Condenser Water: Natural.
 - 3. Letter Color:
 - a. Chilled Water: Black.
 - b. Condenser Water: Black.

3.6 WARNING-TAG INSTALLATION

A. Write required message on, and attach warning tags to, equipment and other items where required.

END OF SECTION 230553

SECTION 230593 - TESTING, ADJUSTING, AND BALANCING FOR HVAC

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. Section Includes:
 - 1. Balancing Air Systems:
 - a. Constant-volume air systems.
 - b. Variable-air-volume systems.
 - 2. Balancing Hydronic Piping Systems:
 - a. Constant-flow hydronic systems.
 - b. Variable-flow hydronic systems.
 - c. Primary-secondary hydronic systems.

1.3 DEFINITIONS

- A. AABC: Associated Air Balance Council.
- B. NEBB: National Environmental Balancing Bureau.
- C. TAB: Testing, adjusting, and balancing.
- D. TABB: Testing, Adjusting, and Balancing Bureau.
- E. TAB Specialist: An entity engaged to perform TAB Work.

1.4 QUALIFICATIONS OF TAB CONTRACTOR AND LEAD TECHNICIAN

A. The Contractor will provide the services of a qualified test and balance contractor. The qualifications of the TAB contracting firm shall be submitted, along with the specific qualifications of the lead site technician who will remain on site during all TAB work, within 15 days of notice to proceed. Recent projects shall be listed and described for both the company and the lead technician. Names and telephone numbers of the project contractors and facility managers will be provided. B. The Owner must approve in writing the qualifications of both the company and the lead technician.

1.5 INFORMATIONAL SUBMITTALS

- A. Qualification Data: Within 30 days of Contractor's Notice to Proceed, submit documentation that the TAB contractor and this Project's TAB team members meet the qualifications specified in "Quality Assurance" Article.
- B. Contract Documents Examination Report: Within 30 days of Contractor's Notice to Proceed, submit the Contract Documents review report as specified in Part 3.
- C. Strategies and Procedures Plan: Within 30 days of Contractor's Notice to Proceed, submit TAB strategies and step-by-step procedures as specified in "Preparation" Article.
- D. Certified TAB reports.
- E. Sample report forms.
- F. Instrument calibration reports, to include the following:
 - 1. Instrument type and make.
 - 2. Serial number.
 - 3. Application.
 - 4. Dates of use.
 - 5. Dates of calibration.

1.6 QUALITY ASSURANCE

- A. TAB Contractor Qualifications: Engage a TAB entity certified by AABC NEBB or TABB.
 - 1. TAB Field Supervisor: Employee of the TAB contractor and certified by AABC NEBB or TABB.
 - 2. TAB Technician: Employee of the TAB contractor and who is certified by AABC NEBB or TABB as a TAB technician.
- B. TAB Conference: Meet with Owner Commissioning Authority on approval of the TAB strategies and procedures plan to develop a mutual understanding of the details. Require the participation of the TAB field supervisor and technicians. Provide seven days' advance notice of scheduled meeting time and location.
 - 1. Agenda Items:
 - a. The Contract Documents examination report.
 - b. The TAB plan.
 - c. Coordination and cooperation of trades and subcontractors.
 - d. Coordination of documentation and communication flow.

- C. Certify TAB field data reports and perform the following:
 - 1. Review field data reports to validate accuracy of data and to prepare certified TAB reports.
 - 2. Certify that the TAB team complied with the approved TAB plan and the procedures specified and referenced in this Specification.
- D. TAB Report Forms: Use standard TAB contractor's forms approved by Owner.
- E. Instrumentation Type, Quantity, Accuracy, and Calibration: As described in ASHRAE 111, Section 5, "Instrumentation."
- F. ASHRAE Compliance: Applicable requirements in ASHRAE 62.1, Section 7.2.2 "Air Balancing."
- G. ASHRAE/IESNA Compliance: Applicable requirements in ASHRAE/IESNA 90.1, Section 6.7.2.3 "System Balancing."

1.7 PROJECT CONDITIONS

- A. Full Owner Occupancy: Owner will occupy the site and existing building during entire TAB period. Cooperate with Owner during TAB operations to minimize conflicts with Owner's operations.
- B. Partial Owner Occupancy: Owner may occupy completed areas of building before Substantial Completion. Cooperate with Owner during TAB operations to minimize conflicts with Owner's operations.

1.8 COORDINATION

- A. Notice: Provide seven days' advance notice for each test. Include scheduled test dates and times.
- B. Perform TAB after leakage and pressure tests on air and water distribution systems have been satisfactorily completed.

PART 2 - PRODUCTS (Not Applicable)

PART 3 - EXECUTION

3.1 TAB SPECIALISTS

- A. Subject to compliance with requirements, available TAB contractors that may be engaged include, but are not limited to, the following:
 - 1. Insert the TAB contractor's name.

3.2 EXAMINATION

- A. Examine the Contract Documents to become familiar with Project requirements and to discover conditions in systems' designs that may preclude proper TAB of systems and equipment.
- B. Examine systems for installed balancing devices, such as test ports, gage cocks, thermometer wells, flow-control devices, balancing valves and fittings, and manual volume dampers. Verify that locations of these balancing devices are accessible.
- C. Examine the approved submittals for HVAC systems and equipment.
- D. Examine design data including HVAC system descriptions, statements of design assumptions for environmental conditions and systems' output, and statements of philosophies and assumptions about HVAC system and equipment controls.
- E. Examine ceiling plenums and underfloor air plenums used for supply, return, or relief air to verify that they meet the leakage class of connected ducts as specified in Section 233113 "Metal Ducts" and are properly separated from adjacent areas. Verify that penetrations in plenum walls are sealed and fire-stopped if required.
- F. Examine equipment performance data including fan and pump curves.
 - 1. Relate performance data to Project conditions and requirements, including system effects that can create undesired or unpredicted conditions that cause reduced capacities in all or part of a system.
 - 2. Calculate system-effect factors to reduce performance ratings of HVAC equipment when installed under conditions different from the conditions used to rate equipment performance. To calculate system effects for air systems, use tables and charts found in AMCA 201, "Fans and Systems," or in SMACNA's "HVAC Systems Duct Design." Compare results with the design data and installed conditions.
- G. Examine system and equipment installations and verify that field quality-control testing, cleaning, and adjusting specified in individual Sections have been performed.
- H. Examine test reports specified in individual system and equipment Sections.
- I. Examine HVAC equipment and filters and verify that bearings are greased, belts are aligned and tight, and equipment with functioning controls is ready for operation.
- J. Examine strainers. Verify that startup screens are replaced by permanent screens with indicated perforations.
- K. Examine three-way valves for proper installation for their intended function of diverting or mixing fluid flows.
- L. Examine heat-transfer coils for correct piping connections and for clean and straight fins.
- M. Examine system pumps to ensure absence of entrained air in the suction piping.

- N. Examine operating safety interlocks and controls on HVAC equipment.
- O. Report deficiencies discovered before and during performance of TAB procedures. Observe and record system reactions to changes in conditions. Record default set points if different from indicated values.

3.3 PREPARATION

- A. Prepare a TAB plan that includes strategies and step-by-step procedures.
- B. Complete system-readiness checks and prepare reports. Verify the following:
 - 1. Permanent electrical-power wiring is complete.
 - 2. Hydronic systems are filled, clean, and free of air.
 - 3. Automatic temperature-control systems are operational.
 - 4. Equipment and duct access doors are securely closed.
 - 5. Balance, smoke, and fire dampers are open.
 - 6. Isolating and balancing valves are open and control valves are operational.
 - 7. Ceilings are installed in critical areas where air-pattern adjustments are required and access to balancing devices is provided.
 - 8. Windows and doors can be closed so indicated conditions for system operations can be met.

3.4 GENERAL PROCEDURES FOR TESTING AND BALANCING

- A. Perform testing and balancing procedures on each system according to the procedures contained in ASHRAE 111 and in this Section.
 - 1. Comply with requirements in ASHRAE 62.1, Section 7.2.2 "Air Balancing."
- B. Cut insulation, ducts, pipes, and equipment cabinets for installation of test probes to the minimum extent necessary for TAB procedures.
 - 1. After testing and balancing, patch probe holes in ducts with same material and thickness as used to construct ducts.
 - 2. After testing and balancing, install test ports and duct access doors that comply with requirements in Section 233300 "Air Duct Accessories."
 - Install and join new insulation that matches removed materials. Restore insulation, coverings, vapor barrier, and finish according to Section 230716 "HVAC Equipment Insulation," and Section 230719 "HVAC Piping Insulation."
- C. Mark equipment and balancing devices, including damper-control positions, valve position indicators, fan-speed-control levers, and similar controls and devices, with paint or other suitable, permanent identification material to show final settings.
- D. Take and report testing and balancing measurements in inch-pound (IP) units.

3.5 GENERAL PROCEDURES FOR BALANCING AIR SYSTEMS

- A. Prepare test reports for both fans and outlets. Obtain manufacturer's outlet factors and recommended testing procedures. Crosscheck the summation of required outlet volumes with required fan volumes.
- B. Prepare schematic diagrams of systems' "as-built" duct layouts.
- C. For variable-air-volume systems, develop a plan to simulate diversity.
- D. Determine the best locations in main and branch ducts for accurate duct-airflow measurements.
- E. Check airflow patterns from the outdoor-air louvers and dampers and the return- and exhaust-air dampers through the supply-fan discharge and mixing dampers.
- F. Locate start-stop and disconnect switches, electrical interlocks, and motor starters.
- G. Verify that motor starters are equipped with properly sized thermal protection.
- H. Check dampers for proper position to achieve desired airflow path.
- I. Check for airflow blockages.
- J. Check condensate drains for proper connections and functioning.
- K. Check for proper sealing of air-handling-unit components.
- L. Verify that air duct system is sealed as specified in Section 233113 "Metal Ducts."

3.6 PROCEDURES FOR CONSTANT-VOLUME AIR SYSTEMS

- A. Adjust fans to deliver total indicated airflows within the maximum allowable fan speed listed by fan manufacturer.
 - 1. Measure total airflow.
 - a. Where sufficient space in ducts is unavailable for Pitot-tube traverse measurements, measure airflow at terminal outlets and inlets and calculate the total airflow.
 - 2. Measure fan static pressures as follows to determine actual static pressure:
 - a. Measure outlet static pressure as far downstream from the fan as practical and upstream from restrictions in ducts such as elbows and transitions.
 - b. Measure static pressure directly at the fan outlet or through the flexible connection.
 - c. Measure inlet static pressure of single-inlet fans in the inlet duct as near the fan as possible, upstream from the flexible connection, and downstream from duct restrictions.

- d. Measure inlet static pressure of double-inlet fans through the wall of the plenum that houses the fan.
- 3. Measure static pressure across each component that makes up an air-handling unit, rooftop unit, and other air-handling and -treating equipment.
 - a. Report the cleanliness status of filters and the time static pressures are measured.
- 4. Measure static pressures entering and leaving other devices, such as sound traps, heat-recovery equipment, and air washers, under final balanced conditions.
- 5. Review Record Documents to determine variations in design static pressures versus actual static pressures. Calculate actual system-effect factors. Recommend adjustments to accommodate actual conditions.
- 6. Obtain approval from Owner Commissioning Authority for adjustment of fan speed higher or lower than indicated speed. Comply with requirements in HVAC Sections for air-handling units for adjustment of fans, belts, and pulley sizes to achieve indicated air-handling-unit performance.
- 7. Do not make fan-speed adjustments that result in motor overload. Consult equipment manufacturers about fan-speed safety factors. Modulate dampers and measure fan-motor amperage to ensure that no overload will occur. Measure amperage in full-cooling, full-heating, economizer, and any other operating mode to determine the maximum required brake horsepower.
- B. Adjust volume dampers for main duct, submain ducts, and major branch ducts to indicated airflows within specified tolerances.
 - 1. Measure airflow of submain and branch ducts.
 - a. Where sufficient space in submain and branch ducts is unavailable for Pitot-tube traverse measurements, measure airflow at terminal outlets and inlets and calculate the total airflow for that zone.
 - 2. Measure static pressure at a point downstream from the balancing damper, and adjust volume dampers until the proper static pressure is achieved.
 - 3. Remeasure each submain and branch duct after all have been adjusted. Continue to adjust submain and branch ducts to indicated airflows within specified tolerances.
- C. Measure air outlets and inlets without making adjustments.
 - 1. Measure terminal outlets using a direct-reading hood or outlet manufacturer's written instructions and calculating factors.
- D. Adjust air outlets and inlets for each space to indicated airflows within specified tolerances of indicated values. Make adjustments using branch volume dampers rather than extractors and the dampers at air terminals.
 - 1. Adjust each outlet in same room or space to within specified tolerances of indicated quantities without generating noise levels above the limitations prescribed by the Contract Documents.

2. Adjust patterns of adjustable outlets for proper distribution without drafts.

3.7 GENERAL PROCEDURES FOR HYDRONIC SYSTEMS

- A. Prepare test reports with pertinent design data, and number in sequence starting at pump to end of system. Check the sum of branch-circuit flows against the approved pump flow rate. Correct variations that exceed plus or minus 5 percent.
- B. Prepare schematic diagrams of systems' "as-built" piping layouts.
- C. Prepare hydronic systems for testing and balancing according to the following, in addition to the general preparation procedures specified above:
 - 1. Open all manual valves for maximum flow.
 - 2. Check liquid level in expansion tank.
 - 3. Check makeup water-station pressure gage for adequate pressure for highest vent.
 - 4. Check flow-control valves for specified sequence of operation, and set at indicated flow.
 - 5. Set differential-pressure control valves at the specified differential pressure. Do not set at fully closed position when pump is positive-displacement type unless several terminal valves are kept open.
 - 6. Set system controls so automatic valves are wide open to heat exchangers.
 - 7. Check pump-motor load. If motor is overloaded, throttle main flow-balancing device so motor nameplate rating is not exceeded.
 - 8. Check air vents for a forceful liquid flow exiting from vents when manually operated.

3.8 PROCEDURES FOR CONSTANT-FLOW HYDRONIC SYSTEMS

- A. Measure water flow at pumps. Use the following procedures except for positive-displacement pumps:
 - 1. Verify impeller size by operating the pump with the discharge valve closed. Read pressure differential across the pump. Convert pressure to head and correct for differences in gage heights. Note the point on manufacturer's pump curve at zero flow and verify that the pump has the intended impeller size.
 - a. If impeller sizes must be adjusted to achieve pump performance, obtain approval from Owner Commissioning Authority and comply with requirements in Section 232123 "Hydronic Pumps."
 - 2. Check system resistance. With all valves open, read pressure differential across the pump and mark pump manufacturer's head-capacity curve. Adjust pump discharge valve until indicated water flow is achieved.
 - a. Monitor motor performance during procedures and do not operate motors in overload conditions.

- 3. Verify pump-motor brake horsepower. Calculate the intended brake horsepower for the system based on pump manufacturer's performance data. Compare calculated brake horsepower with nameplate data on the pump motor. Report conditions where actual amperage exceeds motor nameplate amperage.
- 4. Report flow rates that are not within plus or minus 10 percent of design.
- B. Measure flow at all automatic flow control valves to verify that valves are functioning as designed.
- C. Measure flow at all pressure-independent characterized control valves, with valves in fully open position, to verify that valves are functioning as designed.
- D. Set calibrated balancing valves, if installed, at calculated presettings.
- E. Measure flow at all stations and adjust, where necessary, to obtain first balance.
 - 1. System components that have Cv rating or an accurately cataloged flow-pressure-drop relationship may be used as a flow-indicating device.
- F. Measure flow at main balancing station and set main balancing device to achieve flow that is 5 percent greater than indicated flow.
- G. Adjust balancing stations to within specified tolerances of indicated flow rate as follows:
 - 1. Determine the balancing station with the highest percentage over indicated flow.
 - 2. Adjust each station in turn, beginning with the station with the highest percentage over indicated flow and proceeding to the station with the lowest percentage over indicated flow.
 - 3. Record settings and mark balancing devices.
- H. Measure pump flow rate and make final measurements of pump amperage, voltage, rpm, pump heads, and systems' pressures and temperatures including outdoor-air temperature.
- I. Measure the differential-pressure-control-valve settings existing at the conclusion of balancing.
- J. Check settings and operation of each safety valve. Record settings.

3.9 PROCEDURES FOR PRIMARY-SECONDARY HYDRONIC SYSTEMS

A. Balance the primary circuit flow first and then balance the secondary circuits.

3.10 PROCEDURES FOR HEAT EXCHANGERS

- A. Measure water flow through all circuits.
- B. Adjust water flow to within specified tolerances.

- C. Measure inlet and outlet water temperatures.
- D. Measure inlet steam pressure.
- E. Check settings and operation of safety and relief valves. Record settings.

3.11 PROCEDURES FOR MOTORS

- A. Motors, 1/2 HP and Larger: Test at final balanced conditions and record the following data:
 - 1. Manufacturer's name, model number, and serial number.
 - 2. Motor horsepower rating.
 - 3. Motor rpm.
 - 4. Efficiency rating.
 - 5. Nameplate and measured voltage, each phase.
 - 6. Nameplate and measured amperage, each phase.
 - 7. Starter thermal-protection-element rating.
- B. Motors Driven by Variable-Frequency Controllers: Test for proper operation at speeds varying from minimum to maximum. Test the manual bypass of the controller to prove proper operation. Record observations including name of controller manufacturer, model number, serial number, and nameplate data.

3.12 PROCEDURES FOR CHILLERS

- A. Balance water flow through each evaporator and condenser to within specified tolerances of indicated flow with all pumps operating. With only one chiller operating in a multiple chiller installation, do not exceed the flow for the maximum tube velocity recommended by the chiller manufacturer. Measure and record the following data with each chiller operating at design conditions:
 - 1. Evaporator-water entering and leaving temperatures, pressure drop, and water flow.
 - 2. For water-cooled chillers, condenser-water entering and leaving temperatures, pressure drop, and water flow.
 - 3. Evaporator and condenser refrigerant temperatures and pressures, using instruments furnished by chiller manufacturer.
 - 4. Power factor if factory-installed instrumentation is furnished for measuring kilowatts.
 - 5. Kilowatt input if factory-installed instrumentation is furnished for measuring kilowatts.
 - 6. Capacity: Calculate in tons of cooling.
 - 7. For air-cooled chillers, verify condenser-fan rotation and record fan and motor data including number of fans and entering- and leaving-air temperatures.

3.13 PROCEDURES FOR COOLING TOWERS

- A. Shut off makeup water for the duration of the test, and verify that makeup and blowdown systems are fully operational after tests and before leaving the equipment. Perform the following tests and record the results:
 - 1. Measure condenser-water flow to each cell of the cooling tower.
 - 2. Measure entering- and leaving-water temperatures.
 - 3. Measure wet- and dry-bulb temperatures of entering air.
 - 4. Measure wet- and dry-bulb temperatures of leaving air.
 - 5. Measure condenser-water flow rate recirculating through the cooling tower.
 - 6. Measure cooling-tower spray pump discharge pressure.
 - 7. Adjust water level and feed rate of makeup water system.
 - 8. Measure flow through bypass.

3.14 PROCEDURES FOR TESTING, ADJUSTING, AND BALANCING EXISTING SYSTEMS

- A. Perform a preconstruction inspection of existing equipment that is to remain and be reused.
 - 1. Measure and record the operating speed, airflow, and static pressure of each fan.
 - 2. Measure motor voltage and amperage. Compare the values to motor nameplate information.
 - 3. Check the refrigerant charge.
 - 4. Check the condition of filters.
 - 5. Check the condition of coils.
 - 6. Check the operation of the drain pan and condensate-drain trap.
 - 7. Check bearings and other lubricated parts for proper lubrication.
 - 8. Report on the operating condition of the equipment and the results of the measurements taken. Report deficiencies.
- B. Before performing testing and balancing of existing systems, inspect existing equipment that is to remain and be reused to verify that existing equipment has been cleaned and refurbished. Verify the following:
 - 1. New filters are installed.
 - 2. Coils are clean and fins combed.
 - 3. Drain pans are clean.
 - 4. Fans are clean.
 - 5. Bearings and other parts are properly lubricated.
 - 6. Deficiencies noted in the preconstruction report are corrected.
- C. Perform testing and balancing of existing systems to the extent that existing systems are affected by the renovation work.
 - 1. Compare the indicated airflow of the renovated work to the measured fan airflows, and determine the new fan speed and the face velocity of filters and coils.

- 2. Verify that the indicated airflows of the renovated work result in filter and coil face velocities and fan speeds that are within the acceptable limits defined by equipment manufacturer.
- 3. If calculations increase or decrease the air flow rates and water flow rates by more than 5 percent, make equipment adjustments to achieve the calculated rates. If increase or decrease is 5 percent or less, equipment adjustments are not required.
- 4. Balance each air outlet.

3.15 TOLERANCES

- A. Set HVAC system's air flow rates and water flow rates within the following tolerances:
 - 1. Supply, Return, and Exhaust Fans and Equipment with Fans: Plus or minus 10 percent.
 - 2. Air Outlets and Inlets: Plus or minus 10 percent.
 - 3. Cooling-Water Flow Rate: Plus or minus 10 percent.

3.16 REPORTING

- A. Initial Construction-Phase Report: Based on examination of the Contract Documents as specified in "Examination" Article, prepare a report on the adequacy of design for systems' balancing devices. Recommend changes and additions to systems' balancing devices to facilitate proper performance measuring and balancing. Recommend changes and additions to HVAC systems and general construction to allow access for performance measuring and balancing devices.
- B. Status Reports: Prepare weekly progress reports to describe completed procedures, procedures in progress, and scheduled procedures. Include a list of deficiencies and problems found in systems being tested and balanced. Prepare a separate report for each system and each building floor for systems serving multiple floors.

3.17 FINAL REPORT

- A. General: Prepare a certified written report; tabulate and divide the report into separate sections for tested systems and balanced systems.
 - 1. Include a certification sheet at the front of the report's binder, signed and sealed by the certified testing and balancing engineer.
 - 2. Include a list of instruments used for procedures, along with proof of calibration.
- B. Final Report Contents: In addition to certified field-report data, include the following:
 - 1. Pump curves.
 - 2. Fan curves.
 - 3. Manufacturers' test data.
 - 4. Field test reports prepared by system and equipment installers.

- 5. Other information relative to equipment performance; do not include Shop Drawings and product data.
- C. General Report Data: In addition to form titles and entries, include the following data:
 - 1. Title page.
 - 2. Name and address of the TAB contractor.
 - 3. Project name.
 - 4. Project location.
 - 5. Architect's name and address.
 - 6. Engineer's name and address.
 - 7. Contractor's name and address.
 - 8. Report date.
 - 9. Signature of TAB supervisor who certifies the report.
 - 10. Table of Contents with the total number of pages defined for each section of the report. Number each page in the report.
 - 11. Summary of contents including the following:
 - a. Indicated versus final performance.
 - b. Notable characteristics of systems.
 - c. Description of system operation sequence if it varies from the Contract Documents.
 - 12. Nomenclature sheets for each item of equipment.
 - 13. Data for terminal units, including manufacturer's name, type, size, and fittings.
 - 14. Notes to explain why certain final data in the body of reports vary from indicated values.
 - 15. Test conditions for fans and pump performance forms including the following:
 - a. Settings for outdoor-, return-, and exhaust-air dampers.
 - b. Conditions of filters.
 - c. Cooling coil, wet- and dry-bulb conditions.
 - d. Face and bypass damper settings at coils.
 - e. Fan drive settings including settings and percentage of maximum pitch diameter.
 - f. Inlet vane settings for variable-air-volume systems.
 - g. Settings for supply-air, static-pressure controller.
 - h. Other system operating conditions that affect performance.
- D. System Diagrams: Include schematic layouts of air and hydronic distribution systems. Present each system with single-line diagram and include the following:
 - 1. Quantities of outdoor, supply, return, and exhaust airflows.
 - 2. Water and steam flow rates.
 - 3. Duct, outlet, and inlet sizes.
 - 4. Pipe and valve sizes and locations.
 - 5. Terminal units.
 - 6. Balancing stations.
 - 7. Position of balancing devices.

- E. Apparatus Test Reports: In addition to manufacturer's factory startup equipment reports, include the following:
- F. Fan Test Reports: For supply, return, and exhaust fans, include the following:
 - 1. Fan Data:
 - a. System identification.
 - b. Location.
 - c. Make and type.
 - d. Model number and size.
 - e. Manufacturer's serial number.
 - f. Arrangement and class.
 - g. Sheave make, size in inches, and bore.
 - h. Center-to-center dimensions of sheave, and amount of adjustments in inches.
 - 2. Motor Data:
 - a. Motor make, and frame type and size.
 - b. Horsepower and rpm.
 - c. Volts, phase, and hertz.
 - d. Full-load amperage and service factor.
 - e. Sheave make, size in inches, and bore.
 - f. Center-to-center dimensions of sheave, and amount of adjustments in inches.
 - g. Number, make, and size of belts.
 - 3. Test Data (Indicated and Actual Values):
 - a. Total airflow rate in cfm.
 - b. Total system static pressure in inches wg.
 - c. Fan rpm.
 - d. Discharge static pressure in inches wg.
 - e. Suction static pressure in inches wg.
- G. Round, Flat-Oval, and Rectangular Duct Traverse Reports: Include a diagram with a grid representing the duct cross-section and record the following:
 - 1. Report Data:
 - a. System and air-handling-unit number.
 - b. Location and zone.
 - c. Traverse air temperature in deg F.
 - d. Duct static pressure in inches wg.
 - e. Duct size in inches.
 - f. Duct area in sq. ft..
 - g. Indicated air flow rate in cfm.
 - h. Indicated velocity in fpm.
 - i. Actual air flow rate in cfm.
 - j. Actual average velocity in fpm.

- H. Pump Test Reports: Calculate impeller size by plotting the shutoff head on pump curves and include the following:
 - 1. Unit Data:
 - a. Unit identification.
 - b. Location.
 - c. Service.
 - d. Make and size.
 - e. Model number and serial number.
 - f. Water flow rate in gpm.
 - g. Water pressure differential in feet of head or psig.
 - h. Required net positive suction head in feet of head or psig.
 - i. Pump rpm.
 - j. Impeller diameter in inches.
 - k. Motor make and frame size.
 - 1. Motor horsepower and rpm.
 - m. Voltage at each connection.
 - n. Amperage for each phase.
 - o. Full-load amperage and service factor.
 - p. Seal type.
 - 2. Test Data (Indicated and Actual Values):
 - a. Static head in feet of head or psig.
 - b. Pump shutoff pressure in feet of head or psig.
 - c. Actual impeller size in inches.
 - d. Full-open flow rate in gpm.
 - e. Full-open pressure in feet of head or psig.
 - f. Final discharge pressure in feet of head or psig.
 - g. Final suction pressure in feet of head or psig.
 - h. Final total pressure in feet of head or psig.
 - i. Final water flow rate in gpm.
 - j. Voltage at each connection.
 - k. Amperage for each phase.
- I. Instrument Calibration Reports:
 - 1. Report Data:
 - a. Instrument type and make.
 - b. Serial number.
 - c. Application.
 - d. Dates of use.
 - e. Dates of calibration.

3.18 INSPECTIONS

A. Initial Inspection:

- 1. After testing and balancing are complete, operate each system and randomly check measurements to verify that the system is operating according to the final test and balance readings documented in the final report.
- 2. Check the following for each system:
 - a. Measure airflow of at least 10 percent of air outlets.
 - b. Measure water flow of at least 5 percent of terminals.
 - c. Measure room temperature at each thermostat/temperature sensor. Compare the reading to the set point.
 - d. Verify that balancing devices are marked with final balance position.
 - e. Note deviations from the Contract Documents in the final report.
- B. Final Inspection:
 - 1. After initial inspection is complete and documentation by random checks verifies that testing and balancing are complete and accurately documented in the final report, request that a final inspection be made by Owner Commissioning Authority.
 - 2. The TAB contractor's test and balance engineer shall conduct the inspection in the presence of Owner Commissioning Authority.
 - 3. Owner Commissioning Authority shall randomly select measurements, documented in the final report, to be rechecked. Rechecking shall be limited to either 10 percent of the total measurements recorded or the extent of measurements that can be accomplished in a normal 8-hour business day.
 - 4. If rechecks yield measurements that differ from the measurements documented in the final report by more than the tolerances allowed, the measurements shall be noted as "FAILED."
 - 5. If the number of "FAILED" measurements is greater than 10 percent of the total measurements checked during the final inspection, the testing and balancing shall be considered incomplete and shall be rejected.
- C. TAB Work will be considered defective if it does not pass final inspections. If TAB Work fails, proceed as follows:
 - 1. Recheck all measurements and make adjustments. Revise the final report and balancing device settings to include all changes; resubmit the final report and request a second final inspection.
 - 2. If the second final inspection also fails, Owner may contract the services of another TAB contractor to complete TAB Work according to the Contract Documents and deduct the cost of the services from the original TAB contractor's final payment.
- D. Prepare test and inspection reports.

3.19 ADDITIONAL TESTS

A. Within 90 days of completing TAB, perform additional TAB to verify that balanced conditions are being maintained throughout and to correct unusual conditions.
B. Seasonal Periods: If initial TAB procedures were not performed during near-peak summer and winter conditions, perform additional TAB during near-peak summer and winter conditions.

END OF SECTION 230593

THIS PAGE INTENTIONALLY LEFT BLANK

SECTION 230716 - HVAC EQUIPMENT INSULATION

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. Section includes insulating the following HVAC equipment that is not factory insulated:
 - 1. Chillers.
 - 2. Pumps.
- B. Related Sections:
 - 1. Section 230719 "HVAC Piping Insulation."

1.3 ACTION SUBMITTALS

- A. Product Data: For each type of product indicated. Include thermal conductivity, water-vapor permeance thickness, and jackets (both factory- and field-applied if any).
- B. Shop Drawings: Include plans, elevations, sections, details, and attachments to other work.
 - 1. Detail application of protective shields, saddles, and inserts at hangers for each type of insulation and hanger.
 - 2. Detail attachment and covering of heat tracing inside insulation.
 - 3. Detail removable insulation at equipment connections.
 - 4. Detail application of field-applied jackets.
 - 5. Detail application at linkages of control devices.
 - 6. Detail field application for each equipment type.
- C. Samples: For each type of insulation and jacket indicated. Identify each Sample, describing product and intended use. Sample sizes are as follows:
 - 1. Preformed Pipe Insulation Materials: 12 inches long by NPS 2.
 - 2. Sheet Form Insulation Materials: 12 inches square.
 - 3. Sheet Jacket Materials: 12 inches square.

1.4 INFORMATIONAL SUBMITTALS

- A. Qualification Data: For qualified Installer.
- B. Material Test Reports: From a qualified testing agency acceptable to authorities having jurisdiction indicating, interpreting, and certifying test results for compliance of insulation materials, sealers, attachments, cements, and jackets, with requirements indicated. Include dates of tests and test methods employed.
- C. Field quality-control reports.

1.5 QUALITY ASSURANCE

- A. Installer Qualifications: Skilled mechanics who have successfully completed an apprenticeship program or another craft training program certified by the Department of Labor, Bureau of Apprenticeship and Training.
- B. Surface-Burning Characteristics: For insulation and related materials, as determined by testing identical products according to ASTM E 84, by a testing agency acceptable to authorities having jurisdiction. Factory label insulation and jacket materials and adhesive, mastic, tapes, and cement material containers, with appropriate markings of applicable testing agency.
 - 1. Insulation Installed Indoors: Flame-spread index of 25 or less, and smokedeveloped index of 50 or less.
- C. Mockups: Before installing insulation, build mockups for each type of insulation and finish listed below to demonstrate quality of insulation application and finishes. Build mockups in the location indicated or, if not indicated, as directed by Architect. Use materials indicated for the completed Work.
 - 1. Equipment Mockups:
 - a. One tank or vessel.
 - b. Equipment jacketing.
 - 2. For each mockup, fabricate cutaway sections to allow observation of application details for insulation materials, adhesives, mastics, attachments, and jackets.
 - 3. Notify Architect seven days in advance of dates and times when mockups will be constructed.
 - 4. Obtain Architect's approval of mockups before starting insulation application.
 - 5. Approval of mockups does not constitute approval of deviations from the Contract Documents contained in mockups unless Architect specifically approves such deviations in writing.
 - 6. Maintain mockups during construction in an undisturbed condition as a standard for judging the completed Work.
 - 7. Demolish and remove mockups when directed.

1.6 DELIVERY, STORAGE, AND HANDLING

A. Packaging: Insulation material containers shall be marked by manufacturer with appropriate ASTM standard designation, type and grade, and maximum use temperature.

1.7 COORDINATION

- A. Coordinate sizes and locations of supports, hangers, and insulation shields specified in Section 230529 "Hangers and Supports for HVAC Piping and Equipment."
- B. Coordinate clearance requirements with equipment Installer for equipment insulation application.
- C. Coordinate installation and testing of heat tracing.

1.8 SCHEDULING

- A. Schedule insulation application after pressure testing systems and, where required, after installing and testing heat tracing. Insulation application may begin on segments that have satisfactory test results.
- B. Complete installation and concealment of plastic materials as rapidly as possible in each area of construction.

PART 2 - PRODUCTS

2.1 INSULATION MATERIALS

- A. Comply with requirements in "Breeching Insulation Schedule" and "Equipment Insulation Schedule" articles for where insulating materials shall be applied.
- B. Products shall not contain asbestos, lead, mercury, or mercury compounds.
- C. Products that come in contact with stainless steel shall have a leachable chloride content of less than 50 ppm when tested according to ASTM C 871.
- D. Insulation materials for use on austenitic stainless steel shall be qualified as acceptable according to ASTM C 795.
- E. Foam insulation materials shall not use CFC or HCFC blowing agents in the manufacturing process.
- F. Cellular Glass: Inorganic, incombustible, foamed or cellulated glass with annealed, rigid, hermetically sealed cells. Factory-applied jacket requirements are specified in "Factory-Applied Jackets" Article.
 - 1. Products: Subject to compliance with requirements, provide the following:

- a. Pittsburgh Corning Corporation; Foamglas.
- 2. Block Insulation: ASTM C 552, Type I.
- 3. Special-Shaped Insulation: ASTM C 552, Type III.
- 4. Board Insulation: ASTM C 552, Type IV.
- 5. Factory fabricate shapes according to ASTM C 450 and ASTM C 585.
- G. Flexible Elastomeric Insulation: Closed-cell, sponge- or expanded-rubber materials. Comply with ASTM C 534, Type I for tubular materials and Type II for sheet materials.
 - 1. Products: Subject to compliance with requirements, provide the following:
 - a. Aeroflex USA, Inc.; Aerocel.
 - b. Armacell LLC; AP Armaflex.
 - c. K-Flex USA; Insul-Sheet and K-FLEX LS.
- H. Mineral-Fiber Blanket Insulation: Mineral or glass fibers bonded with a thermosetting resin. Comply with ASTM C 553, Type II and ASTM C 1290, Type II with factory-applied vinyl jacket Type III with factory-applied FSK jacket . Factoryapplied jacket requirements are specified in "Factory-Applied Jackets" Article.
 - 1. Products: Subject to compliance with requirements, provide the following:
 - a. CertainTeed Corp.; SoftTouch Duct Wrap.
 - b. Johns Manville; Microlite.
 - c. Knauf Insulation; Friendly Feel Duct Wrap.
 - d. Manson Insulation Inc.; Alley Wrap.
 - e. Owens Corning; SOFTR All-Service Duct Wrap.
- I. Mineral-Fiber Board Insulation: Mineral or glass fibers bonded with a thermosetting resin. Comply with ASTM C 612, Type IA or Type IB. Provide insulation with factory-applied ASJ with factory-applied FSK jacket. Factory-applied jacket requirements are specified in "Factory-Applied Jackets" Article.
 - 1. Products: Subject to compliance with requirements, provide the following:
 - a. CertainTeed Corp.; CertaPro Commercial Board.
 - b. Fibrex Insulations Inc.; FBX.
 - c. Johns Manville; 800 Series Spin-Glas.
 - d. Knauf Insulation; Insulation Board.
 - e. Manson Insulation Inc.; AK Board.
 - f. Owens Corning; Fiberglas 700 Series.
- J. Mineral-Fiber, Preformed Pipe Insulation:
 - 1. Products: Subject to compliance with requirements, provide the following:
 - a. Fibrex Insulations Inc.; Coreplus 1200.
 - b. Johns Manville; Micro-Lok.
 - c. Knauf Insulation; 1000-Degree Pipe Insulation.

- d. Manson Insulation Inc.; Alley-K.
- e. Owens Corning; Fiberglas Pipe Insulation.
- 2. Type I, 850 Deg F Materials: Mineral or glass fibers bonded with a thermosetting resin. Comply with ASTM C 547, Type I, Grade A, with factory-applied ASJ with factory-applied ASJ-SSL. Factory-applied jacket requirements are specified in "Factory-Applied Jackets" Article.
- 3. Type II, 1200 Deg F Materials: Mineral or glass fibers bonded with a thermosetting resin. Comply with ASTM C 547, Type II, Grade A, with factory-applied ASJ with factory-applied ASJ-SSL. Factory-applied jacket requirements are specified in "Factory-Applied Jackets" Article.
- K. Mineral-Fiber, Pipe and Tank Insulation: Mineral or glass fibers bonded with a thermosetting resin. Semirigid board material with factory-applied FSK jacket complying with ASTM C 1393, Type II or Type IIIA Category 2, or with properties similar to ASTM C 612, Type IB. Nominal density is 2.5 lb/cu. ft. or more. Thermal conductivity (k-value) at 100 deg F is 0.29 Btu x in./h x sq. ft. x deg F or less. Factory-applied jacket requirements are specified in "Factory-Applied Jackets" Article.
 - 1. Products: Subject to compliance with requirements, provide one of the following:
 - a. CertainTeed Corp.; CrimpWrap.
 - b. Johns Manville; MicroFlex.
 - c. Knauf Insulation; Pipe and Tank Insulation.
 - d. Manson Insulation Inc.; AK Flex.
 - e. Owens Corning; Fiberglas Pipe and Tank Insulation.

2.2 INSULATING CEMENTS

- A. Mineral-Fiber Insulating Cement: Comply with ASTM C 195.
 - 1. Products: Subject to compliance with requirements, provide the following:
 - a. Ramco Insulation, Inc.; Super-Stik.
- B. Expanded or Exfoliated Vermiculite Insulating Cement: Comply with ASTM C 196.
 - 1. Products: Subject to compliance with requirements, provide the following:
 - a. Ramco Insulation, Inc.; Thermokote V.
- C. Mineral-Fiber, Hydraulic-Setting Insulating and Finishing Cement: Comply with ASTM C 449.
 - 1. Products: Subject to compliance with requirements, provide the following:
 - a. Ramco Insulation, Inc.; Ramcote 1200 and Quik-Cote.

2.3 ADHESIVES

- A. Materials shall be compatible with insulation materials, jackets, and substrates and for bonding insulation to itself and to surfaces to be insulated unless otherwise indicated.
- B. Calcium Silicate Adhesive: Fibrous, sodium-silicate-based adhesive with a service temperature range of 50 to 800 deg F.
 - 1. Products: Subject to compliance with requirements, provide one of the following:
 - a. Childers Brand, Specialty Construction Brands, Inc., a business of H. B. Fuller Company; CP-97.
 - b. Eagle Bridges Marathon Industries; 290.
 - c. Foster Brand, Specialty Construction Brands, Inc., a business of H. B. Fuller Company; 81-27.
 - d. Mon-Eco Industries, Inc.; 22-30.
 - e. Vimasco Corporation; 760.
 - 2. Adhesive shall comply with the testing and product requirements of the California Department of Health Services' "Standard Practice for the Testing of Volatile Organic Emissions from Various Sources Using Small-Scale Environmental Chambers."
- C. Cellular-Glass Adhesive: Two-component, thermosetting urethane adhesive containing no flammable solvents, with a service temperature range of minus 100 to plus 200 deg F.
 - 1. Products: Subject to compliance with requirements, provide the following:
 - a. Foster Brand, Specialty Construction Brands, Inc., a business of H. B. Fuller Company; 81-84.
 - 2. Adhesive shall comply with the testing and product requirements of the California Department of Health Services' "Standard Practice for the Testing of Volatile Organic Emissions from Various Sources Using Small-Scale Environmental Chambers."
- D. Flexible Elastomeric and Polyolefin Adhesive: Comply with MIL-A-24179A, Type II, Class I.
 - 1. Products: Subject to compliance with requirements, provide one of the following:
 - a. Aeroflex USA, Inc.; Aeroseal.
 - b. Armacell LLC; Armaflex 520 Adhesive.
 - c. Foster Brand, Specialty Construction Brands, Inc., a business of H. B. Fuller Company; 85-75.
 - d. K-Flex USA; R-373 Contact Adhesive.

- 2. Adhesive shall comply with the testing and product requirements of the California Department of Health Services' "Standard Practice for the Testing of Volatile Organic Emissions from Various Sources Using Small-Scale Environmental Chambers."
- E. Mineral-Fiber Adhesive: Comply with MIL-A-3316C, Class 2, Grade A.
 - 1. Products: Subject to compliance with requirements, provide one of the following:
 - a. Childers Brand, Specialty Construction Brands, Inc., a business of H. B. Fuller Company; CP-127.
 - b. Eagle Bridges Marathon Industries; 225.
 - c. Foster Brand, Specialty Construction Brands, Inc., a business of H. B. Fuller Company; 85-60/85-70.
 - d. Mon-Eco Industries, Inc.; 22-25.
 - 2. Adhesive shall comply with the testing and product requirements of the California Department of Health Services' "Standard Practice for the Testing of Volatile Organic Emissions from Various Sources Using Small-Scale Environmental Chambers."
- F. ASJ Adhesive, and FSK and PVDC Jacket Adhesive: Comply with MIL-A-3316C, Class 2, Grade A for bonding insulation jacket lap seams and joints.
 - 1. Products: Subject to compliance with requirements, provide one of the following:
 - a. Childers Brand, Specialty Construction Brands, Inc., a business of H. B. Fuller Company; CP-82.
 - b. Eagle Bridges Marathon Industries; 225.
 - c. Foster Brand, Specialty Construction Brands, Inc., a business of H. B. Fuller Company; 85-50.
 - d. Mon-Eco Industries, Inc.; 22-25.
 - 2. Adhesive shall comply with the testing and product requirements of the California Department of Health Services' "Standard Practice for the Testing of Volatile Organic Emissions from Various Sources Using Small-Scale Environmental Chambers."
- 2.4 MASTICS
 - A. Materials shall be compatible with insulation materials, jackets, and substrates; comply with MIL-PRF-19565C, Type II.
 - 1. For indoor applications, use mastics that have a VOC content of 50 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).
 - B. Vapor-Barrier Mastic: Water based; suitable for indoor and outdoor use on below ambient services.

- 1. Products: Subject to compliance with requirements, provide one of the following:
 - a. Foster Brand, Specialty Construction Brands, Inc., a business of H .B. Fuller Company; 30-80/30-90.
 - b. Vimasco Corporation; 749.
- 2. Water-Vapor Permeance: ASTM E 96/E 96M, Procedure B, 0.013 perm at 43mil dry film thickness.
- 3. Service Temperature Range: Minus 20 to plus 180 deg F.
- 4. Solids Content: ASTM D 1644, 58 percent by volume and 70 percent by weight.
- 5. Color: White.
- C. Vapor-Barrier Mastic: Solvent based; suitable for indoor use on below ambient services.
 - 1. Products: Subject to compliance with requirements, provide one of the following:
 - a. Childers Brand, Specialty Construction Brands, Inc., a business of H. B. Fuller Company; CP-30.
 - b. Eagle Bridges Marathon Industries; 501.
 - c. Foster Brand, Specialty Construction Brands, Inc., a business of H. B. Fuller Company; 30-35.
 - d. Mon-Eco Industries, Inc.; 55-10.
 - 2. Water-Vapor Permeance: ASTM F 1249, 0.05 perm at 35-mil dry film thickness.
 - 3. Service Temperature Range: 0 to 180 deg F.
 - 4. Solids Content: ASTM D 1644, 44 percent by volume and 62 percent by weight.
 - 5. Color: White.
- D. Vapor-Barrier Mastic: Solvent based; suitable for outdoor use on below ambient services.
 - 1. Products: Subject to compliance with requirements, provide one of the following:
 - a. Childers Brand, Specialty Construction Brands, Inc., a business of H. B. Fuller Company; Encacel.
 - b. Eagle Bridges Marathon Industries; 570.
 - c. Foster Brand, Specialty Construction Brands, Inc., a business of H. B. Fuller Company; 60-95/60-96.
 - 2. Water-Vapor Permeance: ASTM F 1249, 0.05 perm at 30-mil dry film thickness.
 - 3. Service Temperature Range: Minus 50 to plus 220 deg F.
 - 4. Solids Content: ASTM D 1644, 33 percent by volume and 46 percent by weight.

5. Color: White.

2.5 LAGGING ADHESIVES

- A. Description: Comply with MIL-A-3316C, Class I, Grade A and shall be compatible with insulation materials, jackets, and substrates.
 - 1. Products: Subject to compliance with requirements, provide one of the following:
 - a. Childers Brand, Specialty Construction Brands, Inc., a business of H. B. Fuller Company; CP-50 AHV2.
 - b. Foster Brand, Specialty Construction Brands, Inc., a business of H. B. Fuller Company; 30-36.
 - c. Vimasco Corporation; 713 and 714.
 - 2. Fire-resistant, water-based lagging adhesive and coating for use indoors to adhere fire-resistant lagging cloths over equipment insulation.

2.6 SEALANTS

- A. Joint Sealants:
 - 1. Joint Sealants for Cellular-Glass, Phenolic, and Polyisocyanurate Products: Subject to compliance with requirements, provide one of the following:
 - a. Childers Brand, Specialty Construction Brands, Inc., a business of H. B. Fuller Company; CP-76.
 - b. Eagle Bridges Marathon Industries; 405.
 - c. Foster Brand, Specialty Construction Brands, Inc., a business of H. B. Fuller Company; 30-45.
 - d. Mon-Eco Industries, Inc.; 44-05.
 - e. Pittsburgh Corning Corporation; Pittseal 444.
 - 2. Materials shall be compatible with insulation materials, jackets, and substrates.
 - 3. Permanently flexible, elastomeric sealant.
 - 4. Service Temperature Range: Minus 100 to plus 300 deg F.
 - 5. Color: White or gray.
 - 6. Sealants shall comply with the testing and product requirements of the California Department of Health Services' "Standard Practice for the Testing of Volatile Organic Emissions from Various Sources Using Small-Scale Environmental Chambers."
- B. FSK and Metal Jacket Flashing Sealants:
 - 1. Products: Subject to compliance with requirements, provide one of the following:

- a. Childers Brand, Specialty Construction Brands, Inc., a business of H. B. Fuller Company; CP-76.
- b. Eagle Bridges Marathon Industries; 405.
- c. Foster Brand, Specialty Construction Brands, Inc., a business of H. B. Fuller Company; 95-44.
- d. Mon-Eco Industries, Inc.; 44-05.
- 2. Materials shall be compatible with insulation materials, jackets, and substrates.
- 3. Fire- and water-resistant, flexible, elastomeric sealant.
- 4. Service Temperature Range: Minus 40 to plus 250 deg F.
- 5. Color: Aluminum.
- 6. Sealants shall comply with the testing and product requirements of the California Department of Health Services' "Standard Practice for the Testing of Volatile Organic Emissions from Various Sources Using Small-Scale Environmental Chambers."
- C. ASJ Flashing Sealants, and Vinyl, PVDC, and PVC Jacket Flashing Sealants:
 - 1. Products: Subject to compliance with requirements, provide the following:
 - a. Childers Brand, Specialty Construction Brands, Inc., a business of H. B. Fuller Company; CP-76.
 - 2. Materials shall be compatible with insulation materials, jackets, and substrates.
 - 3. Fire- and water-resistant, flexible, elastomeric sealant.
 - 4. Service Temperature Range: Minus 40 to plus 250 deg F.
 - 5. Color: White.
 - 6. Sealants shall comply with the testing and product requirements of the California Department of Health Services' "Standard Practice for the Testing of Volatile Organic Emissions from Various Sources Using Small-Scale Environmental Chambers."

2.7 FACTORY-APPLIED JACKETS

- A. Insulation system schedules indicate factory-applied jackets on various applications. When factory-applied jackets are indicated, comply with the following:
 - 1. ASJ: White, kraft-paper, fiberglass-reinforced scrim with aluminum-foil backing; complying with ASTM C 1136, Type I.
 - 2. ASJ-SSL: ASJ with self-sealing, pressure-sensitive, acrylic-based adhesive covered by a removable protective strip; complying with ASTM C 1136, Type I.
 - 3. FSK Jacket: Aluminum-foil, fiberglass-reinforced scrim with kraft-paper backing; complying with ASTM C 1136, Type II.
 - 4. Vinyl Jacket: White vinyl with a permeance of 1.3 perms when tested according to ASTM E 96/E 96M, Procedure A, and complying with NFPA 90A and NFPA 90B.

2.8 FIELD-APPLIED JACKETS

- A. Field-applied jackets shall comply with ASTM C 921, Type I, unless otherwise indicated.
- B. FSK Jacket: Aluminum-foil-face, fiberglass-reinforced scrim with kraft-paper backing.
- C. Metal Jacket:
 - 1. Products: Subject to compliance with requirements, provide one of the following:
 - a. Childers Brand, Specialty Construction Brands, Inc., a business of H. B. Fuller Company; Metal Jacketing Systems.
 - b. ITW Insulation Systems; Aluminum and Stainless Steel Jacketing.
 - c. RPR Products, Inc.; Insul-Mate.
 - 2. Stainless-Steel Jacket: ASTM A 167 or ASTM A 240/A 240M.
 - a. Sheet and roll stock ready for shop or field sizing.
 - b. Material, finish, and thickness are indicated in field-applied jacket schedules.
 - c. Moisture Barrier for Indoor Applications: 3-mil- thick, heat-bonded polyethylene and kraft paper.
 - d. Moisture Barrier for Outdoor Applications: 3-mil- thick, heat-bonded polyethylene and kraft paper.
 - e. Factory-Fabricated Fitting Covers:
 - 1) Same material, finish, and thickness as jacket.
 - 2) Preformed two-piece or gore, 45- and 90-degree, short- and long-radius elbows.
 - 3) Tee covers.
 - 4) Flange and union covers.
 - 5) End caps.
 - 6) Beveled collars.
 - 7) Valve covers.
 - 8) Field fabricate fitting covers only if factory-fabricated fitting covers are not available.
- D. Self-Adhesive Outdoor Jacket: 60-mil- thick, laminated vapor barrier and waterproofing membrane for installation over insulation located aboveground outdoors; consisting of a rubberized bituminous resin on a crosslaminated polyethylene film covered with stucco-embossed aluminum-foil facing.
 - 1. Products: Subject to compliance with requirements, provide the following:
 - a. Polyguard Products, Inc.; Alumaguard 60.

- 2.9 TAPES
 - A. ASJ Tape: White vapor-retarder tape matching factory-applied jacket with acrylic adhesive, complying with ASTM C 1136.
 - 1. Products: Subject to compliance with requirements, provide one of the following:
 - a. ABI, Ideal Tape Division; 428 AWF ASJ.
 - b. Avery Dennison Corporation, Specialty Tapes Division; Fasson 0836.
 - c. Compac Corporation; 104 and 105.
 - d. Venture Tape; 1540 CW Plus, 1542 CW Plus, and 1542 CW Plus/SQ.
 - 2. Width: 3 inches.
 - 3. Thickness: 11.5 mils.
 - 4. Adhesion: 90 ounces force/inch in width.
 - 5. Elongation: 2 percent.
 - 6. Tensile Strength: 40 lbf/inch in width.
 - 7. ASJ Tape Disks and Squares: Precut disks or squares of ASJ tape.
 - B. FSK Tape: Foil-face, vapor-retarder tape matching factory-applied jacket with acrylic adhesive; complying with ASTM C 1136.
 - 1. Products: Subject to compliance with requirements, provide one of the following:
 - a. ABI, Ideal Tape Division; 491 AWF FSK.
 - b. Avery Dennison Corporation, Specialty Tapes Division; Fasson 0827.
 - c. Compac Corporation; 110 and 111.
 - d. Venture Tape; 1525 CW NT, 1528 CW, and 1528 CW/SQ.
 - 2. Width: 3 inches.
 - 3. Thickness: 6.5 mils.
 - 4. Adhesion: 90 ounces force/inch in width.
 - 5. Elongation: 2 percent.
 - 6. Tensile Strength: 40 lbf/inch in width.
 - 7. FSK Tape Disks and Squares: Precut disks or squares of FSK tape.
 - C. Aluminum-Foil Tape: Vapor-retarder tape with acrylic adhesive.
 - 1. Products: Subject to compliance with requirements, provide the following:
 - a. ABI, Ideal Tape Division; 488 AWF.
 - b. Avery Dennison Corporation, Specialty Tapes Division; Fasson 0800.
 - c. Compac Corporation; 120.
 - d. Venture Tape; 3520 CW.
 - 2. Width: 2 inches.
 - 3. Thickness: 3.7 mils.
 - 4. Adhesion: 100 ounces force/inch in width.
 - 5. Elongation: 5 percent.

6. Tensile Strength: 34 lbf/inch in width.

2.10 SECUREMENTS

- A. Bands:
 - 1. Products: Subject to compliance with requirements, provide the following:
 - a. ITW Insulation Systems; Gerrard Strapping and Seals.
 - b. RPR Products, Inc.; Insul-Mate Strapping, Seals, and Springs.
 - 2. Stainless Steel: ASTM A 167 or ASTM A 240/A 240M, Type 304 or Type 316; 0.015 inch thick, 1/2 inch wide with wing seal.
 - 3. Springs: Twin spring set constructed of stainless steel with ends flat and slotted to accept metal bands. Spring size determined by manufacturer for application.
- B. Insulation Pins and Hangers:
 - 1. Capacitor-Discharge-Weld Pins: Copper- or zinc-coated steel pin, fully annealed for capacitor-discharge welding, 0.106-inch- diameter shank, length to suit depth of insulation indicated.
 - a. Products: Subject to compliance with requirements, provide one of the following products that may be incorporated into the Work include, but are not limited to, the following]:
 - 1) AGM Industries, Inc.; CWP-1.
 - 2) GEMCO; CD.
 - 3) Midwest Fasteners, Inc.; CD.
 - 4) Nelson Stud Welding; TPA, TPC, and TPS.
 - 2. Cupped-Head, Capacitor-Discharge-Weld Pins: Copper- or zinc-coated steel pin, fully annealed for capacitor-discharge welding, 0.106-inch- diameter shank, length to suit depth of insulation indicated with integral 1-1/2-inch galvanized carbon-steel washer.
 - a. Products: Subject to compliance with requirements, provide one of the following:
 - 1) AGM Industries, Inc.; CHP-1.
 - 2) GEMCO; Cupped Head Weld Pin.
 - 3) Midwest Fasteners, Inc.; Cupped Head.
 - 4) Nelson Stud Welding; CHP.
 - 3. Insulation-Retaining Washers: Self-locking washers formed from 0.016-inchthick, stainless-steel sheet, with beveled edge sized as required to hold insulation securely in place but not less than 1-1/2 inches in diameter.
 - a. Protect ends with capped self-locking washers incorporating a spring steel insert to ensure permanent retention of cap in exposed locations.

- C. Staples: Outward-clinching insulation staples, nominal 3/4-inch- wide, stainless steel or Monel.
- D. Wire: 0.080-inch nickel-copper alloy .
 - 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - a. C & F Wire.

2.11 CORNER ANGLES

- A. Aluminum Corner Angles: 0.040 inch thick, minimum 1 by 1 inch, aluminum according to ASTM B 209, Alloy 3003, 3005, 3105, or 5005; Temper H-14.
- B. Stainless-Steel Corner Angles: 0.024 inch thick, minimum 1 by 1 inch, stainless steel according to ASTM A 167 or ASTM A 240/A 240M, Type 304or Type 316.

PART 3 - EXECUTION

3.1 EXAMINATION

- A. Examine substrates and conditions for compliance with requirements for installation tolerances and other conditions affecting performance of insulation application.
 - 1. Verify that systems and equipment to be insulated have been tested and are free of defects.
 - 2. Verify that surfaces to be insulated are clean and dry.
- B. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 PREPARATION

- A. Surface Preparation: Clean and dry surfaces to receive insulation. Remove materials that will adversely affect insulation application.
- B. Surface Preparation: Clean and prepare surfaces to be insulated. Before insulating, apply a corrosion coating to insulated surfaces as follows:
 - 1. Stainless Steel: Coat 300 series stainless steel with an epoxy primer 5 mils thick and an epoxy finish 5 mils thick if operating in a temperature range between 140 and 300 deg F. Consult coating manufacturer for appropriate coating materials and application methods for operating temperature range.
 - 2. Carbon Steel: Coat carbon steel operating at a service temperature between 32 and 300 deg F with an epoxy coating. Consult coating manufacturer for appropriate coating materials and application methods for operating temperature range.

- C. Coordinate insulation installation with the trade installing heat tracing. Comply with requirements for heat tracing that apply to insulation.
- D. Mix insulating cements with clean potable water; if insulating cements are to be in contact with stainless-steel surfaces, use demineralized water.

3.3 GENERAL INSTALLATION REQUIREMENTS

- A. Install insulation materials, accessories, and finishes with smooth, straight, and even surfaces; free of voids throughout the length of equipment.
- B. Install insulation materials, forms, vapor barriers or retarders, jackets, and thicknesses required for each item of equipment as specified in insulation system schedules.
- C. Install accessories compatible with insulation materials and suitable for the service. Install accessories that do not corrode, soften, or otherwise attack insulation or jacket in either wet or dry state.
- D. Install insulation with longitudinal seams at top and bottom of horizontal runs.
- E. Install multiple layers of insulation with longitudinal and end seams staggered.
- F. Keep insulation materials dry during application and finishing.
- G. Install insulation with tight longitudinal seams and end joints. Bond seams and joints with adhesive recommended by insulation material manufacturer.
- H. Install insulation with least number of joints practical.
- I. Where vapor barrier is indicated, seal joints, seams, and penetrations in insulation at hangers, supports, anchors, and other projections with vapor-barrier mastic.
 - 1. Install insulation continuously through hangers and around anchor attachments.
 - 2. For insulation application where vapor barriers are indicated, extend insulation on anchor legs from point of attachment to supported item to point of attachment to structure. Taper and seal ends at attachment to structure with vapor-barrier mastic.
 - 3. Install insert materials and install insulation to tightly join the insert. Seal insulation to insulation inserts with adhesive or sealing compound recommended by insulation material manufacturer.
 - 4. Cover inserts with jacket material matching adjacent insulation. Install shields over jacket, arranged to protect jacket from tear or puncture by hanger, support, and shield.
- J. Apply adhesives, mastics, and sealants at manufacturer's recommended coverage rate and wet and dry film thicknesses.
- K. Install insulation with factory-applied jackets as follows:
 - 1. Draw jacket tight and smooth.

- 2. Cover circumferential joints with 3-inch- wide strips, of same material as insulation jacket. Secure strips with adhesive and outward clinching staples along both edges of strip, spaced 4 inches o.c.
- 3. Overlap jacket longitudinal seams at least 1-1/2 inches. Clean and dry surface to receive self-sealing lap. Staple laps with outward clinching staples along edge at [2 inches] [4 inches] o.c.
 - a. For below ambient services, apply vapor-barrier mastic over staples.
- 4. Cover joints and seams with tape, according to insulation material manufacturer's written instructions, to maintain vapor seal.
- 5. Where vapor barriers are indicated, apply vapor-barrier mastic on seams and joints.
- L. Cut insulation in a manner to avoid compressing insulation more than 75 percent of its nominal thickness.
- M. Finish installation with systems at operating conditions. Repair joint separations and cracking due to thermal movement.
- N. Repair damaged insulation facings by applying same facing material over damaged areas. Extend patches at least 4 inches beyond damaged areas. Adhere, staple, and seal patches similar to butt joints.
- O. For above ambient services, do not install insulation to the following:
 - 1. Vibration-control devices.
 - 2. Testing agency labels and stamps.
 - 3. Nameplates and data plates.
 - 4. Manholes.
 - 5. Handholes.
 - 6. Cleanouts.

3.4 INSTALLATION OF EQUIPMENT, TANK, AND VESSEL INSULATION

- A. Mineral-Fiber, Pipe and Tank Insulation Installation for Tanks and Vessels: Secure insulation with adhesive and anchor pins and speed washers.
 - 1. Apply adhesives according to manufacturer's recommended coverage rates per unit area, for 100 percent coverage of tank and vessel surfaces.
 - Groove and score insulation materials to fit as closely as possible to equipment, including contours. Bevel insulation edges for cylindrical surfaces for tight joints. Stagger end joints.
 - 3. Protect exposed corners with secured corner angles.
 - 4. Install adhesively attached or self-sticking insulation hangers and speed washers on sides of tanks and vessels as follows:
 - a. Do not weld anchor pins to ASME-labeled pressure vessels.
 - b. Select insulation hangers and adhesive that are compatible with service temperature and with substrate.

- c. On tanks and vessels, maximum anchor-pin spacing is 3 inches from insulation end joints, and 16 inches o.c. in both directions.
- d. Do not overcompress insulation during installation.
- e. Cut and miter insulation segments to fit curved sides and domed heads of tanks and vessels.
- f. Impale insulation over anchor pins and attach speed washers.
- g. Cut excess portion of pins extending beyond speed washers or bend parallel with insulation surface. Cover exposed pins and washers with tape matching insulation facing.
- 5. Secure each layer of insulation with stainless-steel or aluminum bands. Select band material compatible with insulation materials.
- 6. Where insulation hangers on equipment and vessels are not permitted or practical and where insulation support rings are not provided, install a girdle network for securing insulation. Stretch prestressed aircraft cable around the diameter of vessel and make taut with clamps, turnbuckles, or breather springs. Place one circumferential girdle around equipment approximately 6 inches from each end. Install wire or cable between two circumferential girdles 12 inches o.c. Install a wire ring around each end and around outer periphery of center openings, and stretch prestressed aircraft cable radially from the wire ring to nearest circumferential girdle. Install additional circumferential girdles along the body of equipment or tank at a minimum spacing of 48 inches o.c. Use this network for securing insulation with tie wire or bands.
- 7. Stagger joints between insulation layers at least 3 inches.
- 8. Install insulation in removable segments on equipment access doors, manholes, handholes, and other elements that require frequent removal for service and inspection.
- 9. Bevel and seal insulation ends around manholes, handholes, ASME stamps, and nameplates.
- 10. For equipment with surface temperatures below ambient, apply mastic to open ends, joints, seams, breaks, and punctures in insulation.
- B. Flexible Elastomeric Thermal Insulation Installation for Tanks and Vessels: Install insulation over entire surface of tanks and vessels.
 - 1. Apply 100 percent coverage of adhesive to surface with manufacturer's recommended adhesive.
 - 2. Seal longitudinal seams and end joints.
- C. Insulation Installation on Pumps:
 - 1. Fabricate metal boxes lined with insulation. Fit boxes around pumps and coincide box joints with splits in pump casings. Fabricate joints with outward bolted flanges. Bolt flanges on 6-inch centers, starting at corners. Install 3/8-inch-diameter fasteners with wing nuts. Alternatively, secure the box sections together using a latching mechanism.
 - 2. Fabricate boxes from aluminum, at least 0.040 inch thick.
 - 3. For below ambient services, install a vapor barrier at seams, joints, and penetrations. Seal between flanges with replaceable gasket material to form a vapor barrier.

3.5 FIELD-APPLIED JACKET INSTALLATION

- A. Where glass-cloth jackets are indicated, install directly over bare insulation or insulation with factory-applied jackets.
 - 1. Draw jacket smooth and tight to surface with 2-inch overlap at seams and joints.
 - 2. Embed glass cloth between two 0.062-inch- thick coats of lagging adhesive.
 - 3. Completely encapsulate insulation with coating, leaving no exposed insulation.
- B. Where FSK jackets are indicated, install as follows:
 - 1. Draw jacket material smooth and tight.
 - 2. Install lap or joint strips with same material as jacket.
 - 3. Secure jacket to insulation with manufacturer's recommended adhesive.
 - 4. Install jacket with 1-1/2-inch laps at longitudinal seams and 3-inch- wide joint strips at end joints.
 - 5. Seal openings, punctures, and breaks in vapor-retarder jackets and exposed insulation with vapor-barrier mastic.
- C. Where metal jackets are indicated, install with 2-inch overlap at longitudinal seams and end joints. Overlap longitudinal seams arranged to shed water. Seal end joints with weatherproof sealant recommended by insulation manufacturer. Secure jacket with stainless-steel bands 12 inches o.c. and at end joints.

3.6 FINISHES

- A. Equipment Insulation with ASJ, Glass-Cloth, or Other Paintable Jacket Material: Paint jacket with paint system identified below and as specified in Section 099113 "Exterior Painting" and Section 099123 "Interior Painting."
 - 1. Flat Acrylic Finish: Two finish coats over a primer that is compatible with jacket material and finish coat paint. Add fungicidal agent to render fabric mildew proof.
 - a. Finish Coat Material: Interior, flat, latex-emulsion size.
- B. Flexible Elastomeric Thermal Insulation: After adhesive has fully cured, apply two coats of insulation manufacturer's recommended protective coating.
- C. Color: Final color as selected by Architect. Vary first and second coats to allow visual inspection of the completed Work.
- D. Do not field paint aluminum or stainless-steel jackets.

3.7 FIELD QUALITY CONTROL

- A. Testing Agency: Engage a qualified testing agency to perform tests and inspections.
- B. Perform tests and inspections.

- C. Tests and Inspections: Inspect field-insulated equipment, randomly selected by Architect, by removing field-applied jacket and insulation in layers in reverse order of their installation. Extent of inspection shall be limited to one location(s) for each type of equipment defined in the "Equipment Insulation Schedule" Article. For large equipment, remove only a portion adequate to determine compliance.
- D. All insulation applications will be considered defective Work if sample inspection reveals noncompliance with requirements.

3.8 EQUIPMENT INSULATION SCHEDULE

- A. Insulation materials and thicknesses are identified below. If more than one material is listed for a type of equipment, selection from materials listed is Contractor's option.
- B. Insulate indoor and outdoor equipment that is not factory insulated.
- C. Chillers: Insulate cold surfaces on chillers, including, but not limited to, evaporator bundles, condenser bundles, suction piping, compressor inlets, tube sheets, water boxes, and nozzles with the following:
 - 1. Flexible Elastomeric: 1 inch thick.

3.9 INDOOR, FIELD-APPLIED JACKET SCHEDULE

- A. Install jacket over insulation material. For insulation with factory-applied jacket, install the field-applied jacket over the factory-applied jacket.
- B. If more than one material is listed, selection from materials listed is Contractor's option.
- C. Equipment, Concealed:
 - 1. Stainless Steel, Type 304 or Type 316, Stucco Embossed: 0.020 inch thick.
- D. Equipment, Exposed, up to 48 Inches in Diameter or with Flat Surfaces up to 72 Inches:
 - 1. Stainless Steel, Type 304 or Type 316, Stucco Embossed: 0.020 inch thick.
- E. Equipment, Exposed, Larger Than 48 Inches in Diameter or with Flat Surfaces Larger Than 72 Inches:
 - 1. Stainless Steel, Type 304 or Type 316, Stucco Embossed, with 1-1/4-Inch- Deep Corrugations: 0.024 inch thick.

END OF SECTION 230716

THIS PAGE INTENTIONALLY LEFT BLANK

SECTION 230719 - HVAC PIPING INSULATION

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. Section includes insulating the following HVAC piping systems:
 - 1. Chilled-water piping, indoors.

1.3 ACTION SUBMITTALS

- A. Product Data: For each type of product indicated. Include thermal conductivity, water-vapor permeance thickness, and jackets (both factory and field applied if any).
- B. Shop Drawings: Include plans, elevations, sections, details, and attachments to other work.
 - 1. Detail application of protective shields, saddles, and inserts at hangers for each type of insulation and hanger.
 - 2. Detail insulation application at pipe expansion joints for each type of insulation.
 - 3. Detail insulation application at elbows, fittings, flanges, valves, and specialties for each type of insulation.
 - 4. Detail removable insulation at piping specialties.
 - 5. Detail application of field-applied jackets.
 - 6. Detail application at linkages of control devices.
- C. Samples: For each type of insulation and jacket indicated. Identify each Sample, describing product and intended use.
 - 1. Preformed Pipe Insulation Materials: 12 inches long by NPS 2.
 - 2. Sheet Form Insulation Materials: 12 inches square.
 - 3. Jacket Materials for Pipe: 12 inches long by NPS 2.
 - 4. Sheet Jacket Materials: 12 inches square.
 - 5. Manufacturer's Color Charts: For products where color is specified, show the full range of colors available for each type of finish material.

1.4 INFORMATIONAL SUBMITTALS

A. Qualification Data: For qualified Installer.

- B. Material Test Reports: From a qualified testing agency acceptable to authorities having jurisdiction indicating, interpreting, and certifying test results for compliance of insulation materials, sealers, attachments, cements, and jackets, with requirements indicated. Include dates of tests and test methods employed.
- C. Field quality-control reports.

1.5 QUALITY ASSURANCE

- A. Installer Qualifications: Skilled mechanics who have successfully completed an apprenticeship program or another craft training program certified by the Department of Labor, Bureau of Apprenticeship and Training.
- B. Surface-Burning Characteristics: For insulation and related materials, as determined by testing identical products according to ASTM E 84, by a testing and inspecting agency acceptable to authorities having jurisdiction. Factory label insulation and jacket materials and adhesive, mastic, tapes, and cement material containers, with appropriate markings of applicable testing agency.
 - 1. Insulation Installed Indoors: Flame-spread index of 25 or less, and smokedeveloped index of 50 or less.
- C. Mockups: Before installing insulation, build mockups for each type of insulation and finish listed below to demonstrate quality of insulation application and finishes. Build mockups in the location indicated or, if not indicated, as directed by Architect. Use materials indicated for the completed Work.
 - 1. Piping Mockups:
 - a. One 10-foot section of NPS 2 straight pipe.
 - b. One each of a 90-degree threaded, welded, and flanged elbow.
 - c. One each of a threaded, welded, and flanged tee fitting.
 - d. One NPS 2 or smaller valve, and one NPS 2-1/2 or larger valve.
 - e. Four support hangers including hanger shield and insert.
 - f. One threaded strainer and one flanged strainer with removable portion of insulation.
 - g. One threaded reducer and one welded reducer.
 - h. One pressure temperature tap.
 - i. One mechanical coupling.
 - 2. For each mockup, fabricate cutaway sections to allow observation of application details for insulation materials, adhesives, mastics, attachments, and jackets.
 - 3. Notify Architect seven days in advance of dates and times when mockups will be constructed.
 - 4. Obtain Architect's approval of mockups before starting insulation application.
 - 5. Approval of mockups does not constitute approval of deviations from the Contract Documents contained in mockups unless Architect specifically approves such deviations in writing.
 - 6. Maintain mockups during construction in an undisturbed condition as a standard for judging the completed Work.

7. Demolish and remove mockups when directed.

1.6 DELIVERY, STORAGE, AND HANDLING

A. Packaging: Insulation material containers shall be marked by manufacturer with appropriate ASTM standard designation, type and grade, and maximum use temperature.

1.7 COORDINATION

- A. Coordinate sizes and locations of supports, hangers, and insulation shields specified in Section 230529 "Hangers and Supports for HVAC Piping and Equipment."
- B. Coordinate clearance requirements with piping Installer for piping insulation application. Before preparing piping Shop Drawings, establish and maintain clearance requirements for installation of insulation and field-applied jackets and finishes and for space required for maintenance.
- C. Coordinate installation and testing of heat tracing.

1.8 SCHEDULING

- A. Schedule insulation application after pressure testing systems and, where required, after installing and testing heat tracing. Insulation application may begin on segments that have satisfactory test results.
- B. Complete installation and concealment of plastic materials as rapidly as possible in each area of construction.

PART 2 - PRODUCTS

2.1 INSULATION MATERIALS

- A. Comply with requirements in "Piping Insulation Schedule, General," "Indoor Piping Insulation Schedule," "Outdoor, Aboveground Piping Insulation Schedule," and "Outdoor, Underground Piping Insulation Schedule" articles for where insulating materials shall be applied.
- B. Products shall not contain asbestos, lead, mercury, or mercury compounds.
- C. Products that come in contact with stainless steel shall have a leachable chloride content of less than 50 ppm when tested according to ASTM C 871.
- D. Insulation materials for use on austenitic stainless steel shall be qualified as acceptable according to ASTM C 795.

- E. Foam insulation materials shall not use CFC or HCFC blowing agents in the manufacturing process.
- F. Flexible Elastomeric Insulation: Closed-cell, sponge- or expanded-rubber materials. Comply with ASTM C 534, Type I for tubular materials.
 - 1. Products: Subject to compliance with requirements, provide one of the following:
 - a. Aeroflex USA, Inc.; Aerocel.
 - b. Armacell LLC; AP Armaflex.
 - c. K-Flex USA; Insul-Lock, Insul-Tube, and K-FLEX LS.
- G. Mineral-Fiber Blanket Insulation: Mineral or glass fibers bonded with a thermosetting resin. Comply with ASTM C 553, Type II and ASTM C 1290, Type I. Factory-applied jacket requirements are specified in "Factory-Applied Jackets" Article.
 - 1. Products: Subject to compliance with requirements, provide one of the following:
 - a. CertainTeed Corp.; SoftTouch Duct Wrap.
 - b. Johns Manville; Microlite.
 - c. Knauf Insulation; Friendly Feel Duct Wrap.
 - d. Manson Insulation Inc.; Alley Wrap.
 - e. Owens Corning; SOFTR All-Service Duct Wrap.
- H. Mineral-Fiber, Preformed Pipe Insulation:
 - 1. Products: Subject to compliance with requirements, provide one of the following:
 - a. Fibrex Insulations Inc.; Coreplus 1200.
 - b. Johns Manville; Micro-Lok.
 - c. Knauf Insulation; 1000-Degree Pipe Insulation.
 - d. Manson Insulation Inc.; Alley-K.
 - e. Owens Corning; Fiberglas Pipe Insulation.
 - Type I, 850 deg F Materials: Mineral or glass fibers bonded with a thermosetting resin. Comply with ASTM C 547, Type I, Grade A, with factoryapplied ASJ-SSL. Factory-applied jacket requirements are specified in "Factory-Applied Jackets" Article.

2.2 INSULATING CEMENTS

- A. Mineral-Fiber Insulating Cement: Comply with ASTM C 195.
 - 1. Products: Subject to compliance with requirements, provide the following:
 - a. Ramco Insulation, Inc.; Super-Stik.

- B. Mineral-Fiber, Hydraulic-Setting Insulating and Finishing Cement: Comply with ASTM C 449.
 - 1. Products: Subject to compliance with requirements, provide the following:
 - a. Ramco Insulation, Inc.; Ramcote 1200 and Quik-Cote.

2.3 ADHESIVES

- A. Materials shall be compatible with insulation materials, jackets, and substrates and for bonding insulation to itself and to surfaces to be insulated unless otherwise indicated.
- B. Mineral-Fiber Adhesive: Comply with MIL-A-3316C, Class 2, Grade A.
 - 1. Products: Subject to compliance with requirements, provide one of the following:
 - a. Childers Brand, Specialty Construction Brands, Inc., a business of H. B. Fuller Company; CP-127.
 - b. Eagle Bridges Marathon Industries; 225.
 - c. Foster Brand, Specialty Construction Brands, Inc., a business of H. B. Fuller Company; 85-60/85-70.
 - d. Mon-Eco Industries, Inc.; 22-25.
 - 2. Adhesive shall comply with the testing and product requirements of the California Department of Health Services' "Standard Practice for the Testing of Volatile Organic Emissions from Various Sources Using Small-Scale Environmental Chambers."
- C. ASJ Adhesive, and FSK and PVDC Jacket Adhesive: Comply with MIL-A-3316C, Class 2, Grade A for bonding insulation jacket lap seams and joints.
 - 1. Products: Subject to compliance with requirements, provide one of the following:
 - a. Childers Brand, Specialty Construction Brands, Inc., a business of H. B. Fuller Company; CP-82.
 - b. Eagle Bridges Marathon Industries; 225.
 - c. Foster Brand, Specialty Construction Brands, Inc., a business of H. B. Fuller Company; 85-50.
 - d. Mon-Eco Industries, Inc.; 22-25.
 - 2. Adhesive shall comply with the testing and product requirements of the California Department of Health Services' "Standard Practice for the Testing of Volatile Organic Emissions from Various Sources Using Small-Scale Environmental Chambers."
- D. PVC Jacket Adhesive: Compatible with PVC jacket.

1. Adhesive shall comply with the testing and product requirements of the California Department of Health Services' "Standard Practice for the Testing of Volatile Organic Emissions from Various Sources Using Small-Scale Environmental Chambers."

2.4 MASTICS

- A. Materials shall be compatible with insulation materials, jackets, and substrates; comply with MIL-PRF-19565C, Type II.
 - 1. For indoor applications, use mastics that have a VOC content of 50 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).
- B. Vapor-Barrier Mastic: Water based; suitable for indoor use on below-ambient services.
 - 1. Products: Subject to compliance with requirements, provide one of the following:
 - a. Foster Brand, Specialty Construction Brands, Inc., a business of H. B. Fuller Company; 30-80/30-90.
 - b. Vimasco Corporation; 749.
 - 2. Water-Vapor Permeance: ASTM E 96/E 96M, Procedure B, 0.013 perm at 43mil dry film thickness.
 - 3. Service Temperature Range: Minus 20 to plus 180 deg F.
 - 4. Solids Content: ASTM D 1644, 58 percent by volume and 70 percent by weight.
 - 5. Color: White.
- C. Vapor-Barrier Mastic: Solvent based; suitable for indoor use on below-ambient services.
 - 1. Products: Subject to compliance with requirements, provide one of the following:
 - a. Childers Brand, Specialty Construction Brands, Inc., a business of H. B. Fuller Company; CP-30.
 - b. Eagle Bridges Marathon Industries; 501.
 - c. Foster Brand, Specialty Construction Brands, Inc., a business of H. B. Fuller Company; 30-35.
 - d. Mon-Eco Industries, Inc.; 55-10.
 - 2. Water-Vapor Permeance: ASTM F 1249, 0.05 perm at 35-mil dry film thickness.
 - 3. Service Temperature Range: 0 to 180 deg F.
 - 4. Solids Content: ASTM D 1644, 44 percent by volume and 62 percent by weight.
 - 5. Color: White.

- D. Vapor-Barrier Mastic: Solvent based; suitable for outdoor use on below-ambient services.
 - 1. Products: Subject to compliance with requirements, provide one of the following:
 - a. Childers Brand, Specialty Construction Brands, Inc., a business of H. B. Fuller Company; Encacel.
 - b. Eagle Bridges Marathon Industries; 570.
 - c. Foster Brand, Specialty Construction Brands, Inc., a business of H. B. Fuller Company; 60-95/60-96.
 - 2. Water-Vapor Permeance: ASTM F 1249, 0.05 perm at 30-mil dry film thickness.
 - 3. Service Temperature Range: Minus 50 to plus 220 deg F.
 - 4. Solids Content: ASTM D 1644, 33 percent by volume and 46 percent by weight.
 - 5. Color: White.

2.5 LAGGING ADHESIVES

- A. Description: Comply with MIL-A-3316C, Class I, Grade A and shall be compatible with insulation materials, jackets, and substrates.
 - 1. For indoor applications, use lagging adhesives that have a VOC content of 50 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).
 - 2. Products: Subject to compliance with requirements, provide one of the following:
 - a. Childers Brand, Specialty Construction Brands, Inc., a business of H. B. Fuller Company; CP-50 AHV2.
 - b. Foster Brand, Specialty Construction Brands, Inc., a business of H. B. Fuller Company; 30-36.
 - c. Vimasco Corporation; 713 and 714.
 - 3. Fire-resistant, water-based lagging adhesive and coating for use indoors to adhere fire-resistant lagging cloths over pipe insulation.
 - 4. Service Temperature Range: 0 to plus 180 deg F.
 - 5. Color: White.

2.6 SEALANTS

- A. Joint Sealants:
 - 1. Joint Sealants for Cellular-Glass, Phenolic, and Polyisocyanurate Products: Subject to compliance with requirements, provide one of the following:
 - a. Childers Brand, Specialty Construction Brands, Inc., a business of H. B. Fuller Company; CP-76.

- b. Eagle Bridges Marathon Industries; 405.
- c. Foster Brand, Specialty Construction Brands, Inc., a business of H. B. Fuller Company; 30-45.
- d. Mon-Eco Industries, Inc.; 44-05.
- e. Pittsburgh Corning Corporation; Pittseal 444.
- 2. Materials shall be compatible with insulation materials, jackets, and substrates.
- 3. Permanently flexible, elastomeric sealant.
- 4. Service Temperature Range: Minus 100 to plus 300 deg F.
- 5. Color: White or gray.
- 6. Sealants shall comply with the testing and product requirements of the California Department of Health Services' "Standard Practice for the Testing of Volatile Organic Emissions from Various Sources Using Small-Scale Environmental Chambers."
- B. FSK and Metal Jacket Flashing Sealants:
 - 1. Products: Subject to compliance with requirements, provide one of the following:
 - a. Childers Brand, Specialty Construction Brands, Inc., a business of H. B. Fuller Company; CP-76.
 - b. Eagle Bridges Marathon Industries; 405.
 - c. Foster Brand, Specialty Construction Brands, Inc., a business of H. B. Fuller Company; 95-44.
 - d. Mon-Eco Industries, Inc.; 44-05.
 - 2. Materials shall be compatible with insulation materials, jackets, and substrates.
 - 3. Fire- and water-resistant, flexible, elastomeric sealant.
 - 4. Service Temperature Range: Minus 40 to plus 250 deg F.
 - 5. Color: Aluminum.
 - 6. Sealants shall comply with the testing and product requirements of the California Department of Health Services' "Standard Practice for the Testing of Volatile Organic Emissions from Various Sources Using Small-Scale Environmental Chambers."
- C. ASJ Flashing Sealants, and Vinyl, PVDC, and PVC Jacket Flashing Sealants:
 - 1. Products: Subject to compliance with requirements, provide the following:
 - a. Childers Brand, Specialty Construction Brands, Inc., a business of H. B. Fuller Company; CP-76.
 - 2. Materials shall be compatible with insulation materials, jackets, and substrates.
 - 3. Fire- and water-resistant, flexible, elastomeric sealant.
 - 4. Service Temperature Range: Minus 40 to plus 250 deg F.
 - 5. Color: White.
 - 6. Sealants shall comply with the testing and product requirements of the California Department of Health Services' "Standard Practice for the Testing of Volatile Organic Emissions from Various Sources Using Small-Scale Environmental Chambers."

2.7 FACTORY-APPLIED JACKETS

- A. Insulation system schedules indicate factory-applied jackets on various applications. When factory-applied jackets are indicated, comply with the following:
 - 1. ASJ-SSL: ASJ with self-sealing, pressure-sensitive, acrylic-based adhesive covered by a removable protective strip; complying with ASTM C 1136, Type I.

2.8 FIELD-APPLIED JACKETS

- A. Field-applied jackets shall comply with ASTM C 921, Type I, unless otherwise indicated.
- B. FSK Jacket: Aluminum-foil-face, fiberglass-reinforced scrim with kraft-paper backing.
- C. Metal Jacket:
 - 1. Products: Subject to compliance with requirements, provide one of the following:
 - a. Childers Brand, Specialty Construction Brands, Inc., a business of H. B. Fuller Company; Metal Jacketing Systems.
 - b. ITW Insulation Systems; Aluminum and Stainless Steel Jacketing.
 - c. RPR Products, Inc.; Insul-Mate.
 - 2. Aluminum Jacket: Comply with ASTM B 209, Alloy 3003, 3005, 3105, or 5005, Temper H-14.
 - a. Factory cut and rolled to size.
 - b. Finish and thickness are indicated in field-applied jacket schedules.
 - c. Moisture Barrier for Indoor Applications: 3-mil- thick, heat-bonded polyethylene and kraft paper.
 - d. Moisture Barrier for Outdoor Applications: 3-mil- thick, heat-bonded polyethylene and kraft paper.
 - e. Factory-Fabricated Fitting Covers:
 - 1) Same material, finish, and thickness as jacket.
 - 2) Preformed 2-piece or gore, 45- and 90-degree, short- and long-radius elbows.
 - 3) Tee covers.
 - 4) Flange and union covers.
 - 5) End caps.
 - 6) Beveled collars.
 - 7) Valve covers.
 - 8) Field fabricate fitting covers only if factory-fabricated fitting covers are not available.

- 2.9 TAPES
 - A. ASJ Tape: White vapor-retarder tape matching factory-applied jacket with acrylic adhesive, complying with ASTM C 1136.
 - 1. Products: Subject to compliance with requirements, provide one of the following:
 - a. ABI, Ideal Tape Division; 428 AWF ASJ.
 - b. Avery Dennison Corporation, Specialty Tapes Division; Fasson 0836.
 - c. Compac Corporation; 104 and 105.
 - d. Venture Tape; 1540 CW Plus, 1542 CW Plus, and 1542 CW Plus/SQ.
 - 2. Width: 3 inches.
 - 3. Thickness: 11.5 mils.
 - 4. Adhesion: 90 ounces force/inch in width.
 - 5. Elongation: 2 percent.
 - 6. Tensile Strength: 40 lbf/inch in width.
 - 7. ASJ Tape Disks and Squares: Precut disks or squares of ASJ tape.
 - B. FSK Tape: Foil-face, vapor-retarder tape matching factory-applied jacket with acrylic adhesive; complying with ASTM C 1136.
 - 1. Products: Subject to compliance with requirements, provide one of the following:
 - a. ABI, Ideal Tape Division; 491 AWF FSK.
 - b. Avery Dennison Corporation, Specialty Tapes Division; Fasson 0827.
 - c. Compac Corporation; 110 and 111.
 - d. Venture Tape; 1525 CW NT, 1528 CW, and 1528 CW/SQ.
 - 2. Width: 3 inches.
 - 3. Thickness: 6.5 mils.
 - 4. Adhesion: 90 ounces force/inch in width.
 - 5. Elongation: 2 percent.
 - 6. Tensile Strength: 40 lbf/inch in width.
 - 7. FSK Tape Disks and Squares: Precut disks or squares of FSK tape.
 - C. Aluminum-Foil Tape: Vapor-retarder tape with acrylic adhesive.
 - 1. Products: Subject to compliance with requirements, provide one of the following:
 - a. ABI, Ideal Tape Division; 488 AWF.
 - b. Avery Dennison Corporation, Specialty Tapes Division; Fasson 0800.
 - c. Compac Corporation; 120.
 - d. Venture Tape; 3520 CW.
 - 2. Width: 2 inches.
 - 3. Thickness: 3.7 mils.
 - 4. Adhesion: 100 ounces force/inch in width.

- 5. Elongation: 5 percent.
- 6. Tensile Strength: 34 lbf/inch in width.

2.10 SECUREMENTS

- A. Bands:
 - 1. Products: Subject to compliance with requirements, provide one of the following:
 - a. ITW Insulation Systems; Gerrard Strapping and Seals.
 - b. RPR Products, Inc.; Insul-Mate Strapping, Seals, and Springs.
 - 2. Stainless Steel: ASTM A 167 or ASTM A 240/A 240M, Type 304 or Type 316; 0.015 inch thick, 1/2 inch wide with wing seal or closed seal.
 - 3. Aluminum: ASTM B 209, Alloy 3003, 3005, 3105, or 5005; Temper H-14, 0.020 inch thick, 1/2 inch wide with wing seal or closed seal.
 - 4. Springs: Twin spring set constructed of stainless steel with ends flat and slotted to accept metal bands. Spring size determined by manufacturer for application.
- B. Staples: Outward-clinching insulation staples, nominal 3/4-inch- wide, stainless steel or Monel.

PART 3 - EXECUTION

3.1 EXAMINATION

- A. Examine substrates and conditions for compliance with requirements for installation tolerances and other conditions affecting performance of insulation application.
 - 1. Verify that systems to be insulated have been tested and are free of defects.
 - 2. Verify that surfaces to be insulated are clean and dry.
 - 3. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 PREPARATION

- A. Surface Preparation: Clean and dry surfaces to receive insulation. Remove materials that will adversely affect insulation application.
- B. Surface Preparation: Clean and prepare surfaces to be insulated. Before insulating, apply a corrosion coating to insulated surfaces as follows:
 - 1. Stainless Steel: Coat 300 series stainless steel with an epoxy primer 5 mils thick and an epoxy finish 5 mils thick if operating in a temperature range between 140 and 300 deg F. Consult coating manufacturer for appropriate coating materials and application methods for operating temperature range.

- 2. Carbon Steel: Coat carbon steel operating at a service temperature between 32 and 300 deg F with an epoxy coating. Consult coating manufacturer for appropriate coating materials and application methods for operating temperature range.
- C. Coordinate insulation installation with the trade installing heat tracing. Comply with requirements for heat tracing that apply to insulation.
- D. Mix insulating cements with clean potable water; if insulating cements are to be in contact with stainless-steel surfaces, use demineralized water.

3.3 GENERAL INSTALLATION REQUIREMENTS

- A. Install insulation materials, accessories, and finishes with smooth, straight, and even surfaces; free of voids throughout the length of piping including fittings, valves, and specialties.
- B. Install insulation materials, forms, vapor barriers or retarders, jackets, and thicknesses required for each item of pipe system as specified in insulation system schedules.
- C. Install accessories compatible with insulation materials and suitable for the service. Install accessories that do not corrode, soften, or otherwise attack insulation or jacket in either wet or dry state.
- D. Install insulation with longitudinal seams at top and bottom of horizontal runs.
- E. Install multiple layers of insulation with longitudinal and end seams staggered.
- F. Do not weld brackets, clips, or other attachment devices to piping, fittings, and specialties.
- G. Keep insulation materials dry during application and finishing.
- H. Install insulation with tight longitudinal seams and end joints. Bond seams and joints with adhesive recommended by insulation material manufacturer.
- I. Install insulation with least number of joints practical.
- J. Where vapor barrier is indicated, seal joints, seams, and penetrations in insulation at hangers, supports, anchors, and other projections with vapor-barrier mastic.
 - 1. Install insulation continuously through hangers and around anchor attachments.
 - 2. For insulation application where vapor barriers are indicated, extend insulation on anchor legs from point of attachment to supported item to point of attachment to structure. Taper and seal ends at attachment to structure with vapor-barrier mastic.
 - 3. Install insert materials and install insulation to tightly join the insert. Seal insulation to insulation inserts with adhesive or sealing compound recommended by insulation material manufacturer.

- 4. Cover inserts with jacket material matching adjacent pipe insulation. Install shields over jacket, arranged to protect jacket from tear or puncture by hanger, support, and shield.
- K. Apply adhesives, mastics, and sealants at manufacturer's recommended coverage rate and wet and dry film thicknesses.
- L. Install insulation with factory-applied jackets as follows:
 - 1. Draw jacket tight and smooth.
 - 2. Cover circumferential joints with 3-inch- wide strips, of same material as insulation jacket. Secure strips with adhesive and outward clinching staples along both edges of strip, spaced 4 inches o.c.
 - 3. Overlap jacket longitudinal seams at least 1-1/2 inches. Install insulation with longitudinal seams at bottom of pipe. Clean and dry surface to receive self-sealing lap. Staple laps with outward clinching staples along edge at 4 inches o.c.
 - a. For below-ambient services, apply vapor-barrier mastic over staples.
 - 4. Cover joints and seams with tape, according to insulation material manufacturer's written instructions, to maintain vapor seal.
 - 5. Where vapor barriers are indicated, apply vapor-barrier mastic on seams and joints and at ends adjacent to pipe flanges and fittings.
- M. Cut insulation in a manner to avoid compressing insulation more than 75 percent of its nominal thickness.
- N. Finish installation with systems at operating conditions. Repair joint separations and cracking due to thermal movement.
- O. Repair damaged insulation facings by applying same facing material over damaged areas. Extend patches at least 4 inches beyond damaged areas. Adhere, staple, and seal patches similar to butt joints.
- P. For above-ambient services, do not install insulation to the following:
 - 1. Vibration-control devices.
 - 2. Testing agency labels and stamps.
 - 3. Nameplates and data plates.
 - 4. Manholes.
 - 5. Handholes.
 - 6. Cleanouts.

3.4 PENETRATIONS

- A. Insulation Installation at Roof Penetrations: Install insulation continuously through roof penetrations.
 - 1. Seal penetrations with flashing sealant.

- 2. For applications requiring only indoor insulation, terminate insulation above roof surface and seal with joint sealant. For applications requiring indoor and outdoor insulation, install insulation for outdoor applications tightly joined to indoor insulation ends. Seal joint with joint sealant.
- 3. Extend jacket of outdoor insulation outside roof flashing at least 2 inches below top of roof flashing.
- 4. Seal jacket to roof flashing with flashing sealant.
- B. Insulation Installation at Aboveground Exterior Wall Penetrations: Install insulation continuously through wall penetrations.
 - 1. Seal penetrations with flashing sealant.
 - 2. For applications requiring only indoor insulation, terminate insulation inside wall surface and seal with joint sealant. For applications requiring indoor and outdoor insulation, install insulation for outdoor applications tightly joined to indoor insulation ends. Seal joint with joint sealant.
 - 3. Extend jacket of outdoor insulation outside wall flashing and overlap wall flashing at least 2 inches.
 - 4. Seal jacket to wall flashing with flashing sealant.
- C. Insulation Installation at Interior Wall and Partition Penetrations (That Are Not Fire Rated): Install insulation continuously through walls and partitions.
- D. Insulation Installation at Fire-Rated Wall and Partition Penetrations: Install insulation continuously through penetrations of fire-rated walls and partitions.
 - 1. Comply with requirements in Section 078413 "Penetration Firestopping" for firestopping and fire-resistive joint sealers.

3.5 GENERAL PIPE INSULATION INSTALLATION

- A. Requirements in this article generally apply to all insulation materials except where more specific requirements are specified in various pipe insulation material installation articles.
- B. Insulation Installation on Fittings, Valves, Strainers, Flanges, and Unions:
 - 1. Install insulation over fittings, valves, strainers, flanges, unions, and other specialties with continuous thermal and vapor-retarder integrity unless otherwise indicated.
 - 2. Insulate pipe elbows using preformed fitting insulation or mitered fittings made from same material and density as adjacent pipe insulation. Each piece shall be butted tightly against adjoining piece and bonded with adhesive. Fill joints, seams, voids, and irregular surfaces with insulating cement finished to a smooth, hard, and uniform contour that is uniform with adjoining pipe insulation.
 - 3. Insulate tee fittings with preformed fitting insulation or sectional pipe insulation of same material and thickness as used for adjacent pipe. Cut sectional pipe insulation to fit. Butt each section closely to the next and hold in place with tie wire. Bond pieces with adhesive.
- 4. Insulate valves using preformed fitting insulation or sectional pipe insulation of same material, density, and thickness as used for adjacent pipe. Overlap adjoining pipe insulation by not less than two times the thickness of pipe insulation, or one pipe diameter, whichever is thicker. For valves, insulate up to and including the bonnets, valve stuffing-box studs, bolts, and nuts. Fill joints, seams, and irregular surfaces with insulating cement.
- 5. Insulate strainers using preformed fitting insulation or sectional pipe insulation of same material, density, and thickness as used for adjacent pipe. Overlap adjoining pipe insulation by not less than two times the thickness of pipe insulation, or one pipe diameter, whichever is thicker. Fill joints, seams, and irregular surfaces with insulating cement. Insulate strainers so strainer basket flange or plug can be easily removed and replaced without damaging the insulation and jacket. Provide a removable reusable insulation cover. For below-ambient services, provide a design that maintains vapor barrier.
- 6. Insulate flanges and unions using a section of oversized preformed pipe insulation. Overlap adjoining pipe insulation by not less than two times the thickness of pipe insulation, or one pipe diameter, whichever is thicker.
- 7. Cover segmented insulated surfaces with a layer of finishing cement and coat with a mastic. Install vapor-barrier mastic for below-ambient services and a breather mastic for above-ambient services. Reinforce the mastic with fabric-reinforcing mesh. Trowel the mastic to a smooth and well-shaped contour.
- 8. For services not specified to receive a field-applied jacket except for flexible elastomeric and polyolefin, install fitted PVC cover over elbows, tees, strainers, valves, flanges, and unions. Terminate ends with PVC end caps. Tape PVC covers to adjoining insulation facing using PVC tape.
- 9. Stencil or label the outside insulation jacket of each union with the word "union." Match size and color of pipe labels.
- C. Insulate instrument connections for thermometers, pressure gages, pressure temperature taps, test connections, flow meters, sensors, switches, and transmitters on insulated pipes. Shape insulation at these connections by tapering it to and around the connection with insulating cement and finish with finishing cement, mastic, and flashing sealant.
- D. Install removable insulation covers at locations indicated. Installation shall conform to the following:
 - 1. Make removable flange and union insulation from sectional pipe insulation of same thickness as that on adjoining pipe. Install same insulation jacket as adjoining pipe insulation.
 - 2. When flange and union covers are made from sectional pipe insulation, extend insulation from flanges or union long at least two times the insulation thickness over adjacent pipe insulation on each side of flange or union. Secure flange cover in place with stainless-steel or aluminum bands. Select band material compatible with insulation and jacket.
 - 3. Construct removable valve insulation covers in same manner as for flanges, except divide the two-part section on the vertical center line of valve body.

- 4. When covers are made from block insulation, make two halves, each consisting of mitered blocks wired to stainless-steel fabric. Secure this wire frame, with its attached insulation, to flanges with tie wire. Extend insulation at least 2 inches over adjacent pipe insulation on each side of valve. Fill space between flange or union cover and pipe insulation with insulating cement. Finish cover assembly with insulating cement applied in two coats. After first coat is dry, apply and trowel second coat to a smooth finish.
- 5. Unless a PVC jacket is indicated in field-applied jacket schedules, finish exposed surfaces with a metal jacket.

3.6 INSTALLATION OF MINERAL-FIBER INSULATION

- A. Insulation Installation on Straight Pipes and Tubes:
 - 1. Secure each layer of preformed pipe insulation to pipe with wire or bands and tighten bands without deforming insulation materials.
 - 2. Where vapor barriers are indicated, seal longitudinal seams, end joints, and protrusions with vapor-barrier mastic and joint sealant.
 - 3. For insulation with factory-applied jackets on above-ambient surfaces, secure laps with outward-clinched staples at 6 inches o.c.
 - 4. For insulation with factory-applied jackets on below-ambient surfaces, do not staple longitudinal tabs. Instead, secure tabs with additional adhesive as recommended by insulation material manufacturer and seal with vapor-barrier mastic and flashing sealant.
- B. Insulation Installation on Pipe Flanges:
 - 1. Install preformed pipe insulation to outer diameter of pipe flange.
 - 2. Make width of insulation section same as overall width of flange and bolts, plus twice the thickness of pipe insulation.
 - 3. Fill voids between inner circumference of flange insulation and outer circumference of adjacent straight pipe segments with mineral-fiber blanket insulation.
 - 4. Install jacket material with manufacturer's recommended adhesive, overlap seams at least 1 inch, and seal joints with flashing sealant.
- C. Insulation Installation on Pipe Fittings and Elbows:
 - 1. Install preformed sections of same material as straight segments of pipe insulation when available.
 - 2. When preformed insulation elbows and fittings are not available, install mitered sections of pipe insulation, to a thickness equal to adjoining pipe insulation. Secure insulation materials with wire or bands.
- D. Insulation Installation on Valves and Pipe Specialties:
 - 1. Install preformed sections of same material as straight segments of pipe insulation when available.
 - 2. When preformed sections are not available, install mitered sections of pipe insulation to valve body.

- 3. Arrange insulation to permit access to packing and to allow valve operation without disturbing insulation.
- 4. Install insulation to flanges as specified for flange insulation application.

3.7 FIELD-APPLIED JACKET INSTALLATION

- A. Where FSK jackets are indicated, install as follows:
 - 1. Draw jacket material smooth and tight.
 - 2. Install lap or joint strips with same material as jacket.
 - 3. Secure jacket to insulation with manufacturer's recommended adhesive.
 - 4. Install jacket with 1-1/2-inch laps at longitudinal seams and 3-inch- wide joint strips at end joints.
 - 5. Seal openings, punctures, and breaks in vapor-retarder jackets and exposed insulation with vapor-barrier mastic.
- B. Where metal jackets are indicated, install with 2-inch overlap at longitudinal seams and end joints. Overlap longitudinal seams arranged to shed water. Seal end joints with weatherproof sealant recommended by insulation manufacturer. Secure jacket with stainless-steel bands 12 inches o.c. and at end joints.

3.8 FINISHES

- A. Pipe Insulation with ASJ, Glass-Cloth, or Other Paintable Jacket Material: Paint jacket with paint system identified below and as specified in Section 099113 "Exterior Painting" and Section 099123 "Interior Painting."
 - 1. Flat Acrylic Finish: Two finish coats over a primer that is compatible with jacket material and finish coat paint. Add fungicidal agent to render fabric mildew proof.
 - a. Finish Coat Material: Interior, flat, latex-emulsion size.
- B. Flexible Elastomeric Thermal Insulation: After adhesive has fully cured, apply two coats of insulation manufacturer's recommended protective coating.
- C. Color: Final color as selected by Architect. Vary first and second coats to allow visual inspection of the completed Work.
- D. Do not field paint aluminum or stainless-steel jackets.

3.9 FIELD QUALITY CONTROL

- A. Testing Agency: Engage a qualified testing agency to perform tests and inspections.
- B. Tests and Inspections:

- 1. Inspect pipe, fittings, strainers, and valves, randomly selected by Architect, by removing field-applied jacket and insulation in layers in reverse order of their installation. Extent of inspection shall be limited to three locations of straight pipe, three locations of threaded fittings, three locations of welded fittings, two locations of threaded strainers, two locations of welded strainers, three locations of threaded strainers of threaded valves for each pipe service defined in the "Piping Insulation Schedule, General" Article.
- C. All insulation applications will be considered defective Work if sample inspection reveals noncompliance with requirements.

3.10 PIPING INSULATION SCHEDULE, GENERAL

- A. Acceptable preformed pipe and tubular insulation materials and thicknesses are identified for each piping system and pipe size range. If more than one material is listed for a piping system, selection from materials listed is Contractor's option.
- B. Items Not Insulated: Unless otherwise indicated, do not install insulation on the following:
 - 1. Drainage piping located in crawl spaces.
 - 2. Underground piping.
 - 3. Chrome-plated pipes and fittings unless there is a potential for personnel injury.

3.11 INDOOR PIPING INSULATION SCHEDULE

- A. Condensate and Equipment Drain Water below 60 Deg F:
 - 1. All Pipe Sizes: Insulation shall be one of the following:
 - a. Mineral-Fiber, Preformed Pipe Insulation, Type I: 1 inch thick.
- B. Chilled Water and Brine, above 40 Deg F:
 - 1. NPS 12 and Smaller: Insulation shall be one of the following:
 - a. Flexible Elastomeric: 1 inch thick.
 - b. Mineral-Fiber, Preformed Pipe, Type I: 2 inches thick.
 - 2. NPS 14 and Larger: Insulation shall be the following:
 - a. Mineral-Fiber Preformed Pipe, Type I, : 2 inches thick.

3.12 INDOOR, FIELD-APPLIED JACKET SCHEDULE

- A. Install jacket over insulation material. For insulation with factory-applied jacket, install the field-applied jacket over the factory-applied jacket.
- B. If more than one material is listed, selection from materials listed is Contractor's option.

- C. Piping, Concealed:
 - 1. Painted Aluminum, Stucco Embossed: 0.020 inch thick.
- D. Piping, Exposed:
 - 1. Aluminum, Stucco Embossed: 0.020 inch thick.

3.13 OUTDOOR, FIELD-APPLIED JACKET SCHEDULE

- A. Install jacket over insulation material. For insulation with factory-applied jacket, install the field-applied jacket over the factory-applied jacket.
- B. If more than one material is listed, selection from materials listed is Contractor's option.
- C. Piping, Concealed:
 - 1. Painted Aluminum, Stucco Embossed: 0.024 inch thick.
- D. Piping, Exposed:
 - 1. Painted Aluminum, Stucco Embossed: 0.032 inch thick.

END OF SECTION 230719

THIS PAGE INTENTIONALLY LEFT BLANK

SECTION 232113 - HYDRONIC PIPING

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. Section includes pipe and fitting materials and joining methods for the following:
 - 1. Chilled-water piping.
 - 2. Condenser-water piping.
 - 3. Makeup-water piping.

1.3 ACTION SUBMITTALS

- A. Delegated-Design Submittal:
 - 1. Design calculations and detailed fabrication and assembly of pipe anchors and alignment guides, hangers and supports for multiple pipes, expansion joints and loops, and attachments of the same to the building structure.
 - 2. Locations of pipe anchors and alignment guides and expansion joints and loops.
 - 3. Locations of and details for penetrations, including sleeves and sleeve seals for exterior walls, floors, basement, and foundation walls.
 - 4. Locations of and details for penetration and firestopping for fire- and smokerated wall and floor and ceiling assemblies.

1.4 INFORMATIONAL SUBMITTALS

- A. Coordination Drawings: Piping layout, drawn to scale, on which the following items are shown and coordinated with each other, using input from installers of the items involved:
 - 1. Other building services.
 - 2. Structural members.
- B. Qualification Data: For Installer.
- C. Welding certificates.

1.5 QUALITY ASSURANCE

- A. Steel Support Welding: Qualify procedures and personnel according to AWS D1.1/D1.1M, "Structural Welding Code Steel."
- B. Pipe Welding: Qualify procedures and operators according to ASME Boiler and Pressure Vessel Code: Section IX.
 - 1. Comply with ASME B31.9, "Building Services Piping," for materials, products, and installation.
 - 2. Certify that each welder has passed AWS qualification tests for welding processes involved and that certification is current.

PART 2 - PRODUCTS

2.1 PERFORMANCE REQUIREMENTS

- A. Hydronic piping components and installation shall be capable of withstanding the following minimum working pressure and temperature unless otherwise indicated:
 - 1. Chilled-Water Piping: 125 psig at 100 deg F.
 - 2. Condenser-Water Piping: 125 psig at 150 deg F.
 - 3. Makeup-Water Piping: 80 psig at 150 deg F.

2.2 COPPER TUBE AND FITTINGS

- A. Drawn-Temper Copper Tubing: ASTM B 88, Type LASTM B 88, Type M.
- B. Annealed-Temper Copper Tubing: ASTM B 88, Type K.
- C. Wrought-Copper Unions: ASME B16.22.

2.3 STEEL PIPE AND FITTINGS

- A. Steel Pipe: ASTM A 53/A 53M, black steel with plain ends; welded and seamless, Grade B, and wall thickness as indicated in "Piping Applications" Article.
- B. Cast-Iron Threaded Fittings: ASME B16.4; Classes 125 and 250 as indicated in "Piping Applications" Article.
- C. Malleable-Iron Threaded Fittings: ASME B16.3, Classes 150 and 300 as indicated in "Piping Applications" Article.
- D. Malleable-Iron Unions: ASME B16.39; Classes 150, 250, and 300 as indicated in "Piping Applications" Article.

- E. Cast-Iron Pipe Flanges and Flanged Fittings: ASME B16.1, Classes 25, 125, and 250; raised ground face, and bolt holes spot faced as indicated in "Piping Applications" Article.
- F. Wrought-Steel Fittings: ASTM A 234/A 234M, wall thickness to match adjoining pipe.
- G. Wrought Cast- and Forged-Steel Flanges and Flanged Fittings: ASME B16.5, including bolts, nuts, and gaskets of the following material group, end connections, and facings:
 - 1. Material Group: 1.1.
 - 2. End Connections: Butt welding.
 - 3. Facings: Raised face.
- H. Steel Pipe Nipples: ASTM A 733, made of same materials and wall thicknesses as pipe in which they are installed.

2.4 JOINING MATERIALS

- A. Pipe-Flange Gasket Materials: Suitable for chemical and thermal conditions of piping system contents.
 - 1. ASME B16.21, nonmetallic, flat, asbestos free, 1/8-inch maximum thickness unless otherwise indicated.
 - a. Full-Face Type: For flat-face, Class 125, cast-iron and cast-bronze flanges.
 - b. Narrow-Face Type: For raised-face, Class 250, cast-iron and steel flanges.
- B. Flange Bolts and Nuts: ASME B18.2.1, carbon steel, unless otherwise indicated.
- C. Solder Filler Metals: ASTM B 32, lead-free alloys. Include water-flushable flux according to ASTM B 813.
- D. Brazing Filler Metals: AWS A5.8/A5.8M, BCuP Series, copper-phosphorus alloys for joining copper with copper; or BAg-1, silver alloy for joining copper with bronze or steel.
- E. Welding Filler Metals: Comply with AWS D10.12M/D10.12 for welding materials appropriate for wall thickness and chemical analysis of steel pipe being welded.
- F. Gasket Material: Thickness, material, and type suitable for fluid to be handled and working temperatures and pressures.

PART 3 - EXECUTION

3.1 PIPING APPLICATIONS

- A. Chilled-water piping, aboveground, NPS 2-1/2 and larger, shall be the following:
 - 1. Schedule 40 steel pipe (or STD), wrought-steel fittings and wrought-cast or forged-steel flanges and flange fittings, and welded and flanged joints.
- B. Condenser-water piping, aboveground, NPS 2-1/2 and larger, shall be the following:
 - 1. Schedule 40 steel pipe (or STD), wrought-steel fittings and wrought-cast or forged-steel flanges and flange fittings, and welded and flanged joints.
- C. Makeup-water piping installed aboveground shall be the following:
 - 1. Type L, drawn-temper copper tubing, wrought-copper fittings, and soldered brazed joints.
- D. Blowdown-Drain Piping: Same materials and joining methods as for piping specified for the service in which blowdown drain is installed.

3.2 PIPING INSTALLATIONS

- A. Drawing plans, schematics, and diagrams indicate general location and arrangement of piping systems. Install piping as indicated unless deviations to layout are approved on Coordination Drawings.
- B. Install piping in concealed locations unless otherwise indicated and except in equipment rooms and service areas.
- C. Install piping indicated to be exposed and piping in equipment rooms and service areas at right angles or parallel to building walls. Diagonal runs are prohibited unless specifically indicated otherwise.
- D. Install piping to permit valve servicing.
- E. Install piping at indicated slopes.
- F. Install piping free of sags and bends.
- G. Install fittings for changes in direction and branch connections.
- H. Install piping to allow application of insulation.
- I. Select system components with pressure rating equal to or greater than system operating pressure.
- J. Install groups of pipes parallel to each other, spaced to permit applying insulation and servicing of valves.

- K. Install drains, consisting of a tee fitting, NPS 3/4 ball valve, and short NPS 3/4 threaded nipple with cap, at low points in piping system mains and elsewhere as required for system drainage.
- L. Install piping at a uniform grade of 0.2 percent upward in direction of flow.
- M. Reduce pipe sizes using eccentric reducer fitting installed with level side up.
- N. Install branch connections to mains using tee fittings in main pipe, with the branch connected to the bottom of the main pipe. For up-feed risers, connect the branch to the top of the main pipe.
- O. Install valves according to Section 230523 "General-Duty Valves for HVAC Piping."
- P. Install unions in piping, NPS 2 and smaller, adjacent to valves, at final connections of equipment, and elsewhere as indicated.
- Q. Install flanges in piping, NPS 2-1/2 and larger, at final connections of equipment and elsewhere as indicated.
- R. Install shutoff valve immediately upstream of each dielectric fitting.
- S. Comply with requirements in Section 230516 "Expansion Fittings and Loops for HVAC Piping" for installation of expansion loops, expansion joints, anchors, and pipe alignment guides.
- T. Comply with requirements in Section 230553 "Identification for HVAC Piping and Equipment" for identifying piping.
- U. Install sleeves for piping penetrations of walls, ceilings, and floors. Comply with requirements for sleeves specified in Section 230517 "Sleeves and Sleeve Seals for HVAC Piping."
- V. Install sleeve seals for piping penetrations of concrete walls and slabs. Comply with requirements for sleeve seals specified in Section 230517 "Sleeves and Sleeve Seals for HVAC Piping."
- W. Install escutcheons for piping penetrations of walls, ceilings, and floors. Comply with requirements for escutcheons specified in Section 230518 "Escutcheons for HVAC Piping."

3.3 HANGERS AND SUPPORTS

- A. Comply with requirements in Section 230529 "Hangers and Supports for HVAC Piping and Equipment" for hanger, support, and anchor devices. Comply with the following requirements for maximum spacing of supports.
- B. Comply with requirements in Section 230548 "Vibration and Seismic Controls for HVAC" for seismic restraints.
- C. Install the following pipe attachments:

- 1. Adjustable steel clevis hangers for individual horizontal piping less than 20 feet long.
- 2. Adjustable roller hangers and spring hangers for individual horizontal piping 20 feet or longer.
- 3. Pipe Roller: MSS SP-58, Type 44 for multiple horizontal piping 20 feet or longer, supported on a trapeze.
- 4. Spring hangers to support vertical runs.
- 5. Provide copper-clad hangers and supports for hangers and supports in direct contact with copper pipe.
- 6. On plastic pipe, install pads or cushions on bearing surfaces to prevent hanger from scratching pipe.
- D. Install hangers for steel piping with the following maximum spacing and minimum rod sizes:
 - 1. NPS 3/4: Maximum span, 7 feet.
 - 2. NPS 1: Maximum span, 7 feet.
 - 3. NPS 1-1/2: Maximum span, 9 feet.
 - 4. NPS 2: Maximum span, 10 feet.
 - 5. NPS 2-1/2: Maximum span, 11 feet.
 - 6. NPS 3 and Larger: Maximum span, 12 feet.
- E. Support vertical runs at roof, at each floor, and at 10-foot intervals between floors.

3.4 PIPE JOINT CONSTRUCTION

- A. Ream ends of pipes and tubes and remove burrs. Bevel plain ends of steel pipe.
- B. Remove scale, slag, dirt, and debris from inside and outside of pipe and fittings before assembly.
- C. Soldered Joints: Apply ASTM B 813, water-flushable flux, unless otherwise indicated, to tube end. Construct joints according to ASTM B 828 or CDA's "Copper Tube Handbook," using lead-free solder alloy complying with ASTM B 32.
- D. Brazed Joints: Construct joints according to AWS's "Brazing Handbook," "Pipe and Tube" Chapter, using copper-phosphorus brazing filler metal complying with AWS A5.8/A5.8M.
- E. Threaded Joints: Thread pipe with tapered pipe threads according to ASME B1.20.1.
 Cut threads full and clean using sharp dies. Ream threaded pipe ends to remove burrs and restore full ID. Join pipe fittings and valves as follows:
 - 1. Apply appropriate tape or thread compound to external pipe threads unless dry seal threading is specified.
 - 2. Damaged Threads: Do not use pipe or pipe fittings with threads that are corroded or damaged. Do not use pipe sections that have cracked or open welds.

- F. Welded Joints: Construct joints according to AWS D10.12M/D10.12, using qualified processes and welding operators according to "Quality Assurance" Article.
- G. Flanged Joints: Select appropriate gasket material, size, type, and thickness for service application. Install gasket concentrically positioned. Use suitable lubricants on bolt threads.

END OF SECTION 232113

THIS PAGE INTENTIONALLY LEFT BLANK

SECTION 232116 - HYDRONIC PIPING SPECIALTIES

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. Section includes special-duty valves and specialties for the following:
 - 1. Chilled-water piping.
 - 2. Condenser-water piping.
 - 3. Makeup-water piping.
 - 4. Blowdown-drain piping.
 - 5. Air-vent piping.

1.3 ACTION SUBMITTALS

- A. Product Data: For each type of the following:
 - 1. Valves: Include flow and pressure drop curves based on manufacturer's testing for calibrated-orifice balancing valves and automatic flow-control valves.
 - 2. Air-control devices.
 - 3. Hydronic specialties.

1.4 CLOSEOUT SUBMITTALS

A. Operation and Maintenance Data: For air-control devices, hydronic specialties, and special-duty valves to include in emergency, operation, and maintenance manuals.

1.5 MAINTENANCE MATERIAL SUBMITTALS

A. Differential Pressure Meter: For each type of balancing valve and automatic flow control valve, include flowmeter, probes, hoses, flow charts, and carrying case.

1.6 QUALITY ASSURANCE

A. Pipe Welding: Qualify procedures and operators according to ASME Boiler and Pressure Vessel Code: Section IX.

1. Safety valves and pressure vessels shall bear the appropriate ASME label. Fabricate and stamp air separators and expansion tanks to comply with ASME Boiler and Pressure Vessel Code: Section VIII, Division 1.

PART 2 - PRODUCTS

2.1 PERFORMANCE REQUIREMENTS

- A. Hydronic piping components and installation shall be capable of withstanding the following minimum working pressure and temperature unless otherwise indicated:
 - 1. Chilled-Water Piping: 125 psig at 200 deg F.
 - 2. Condenser-Water Piping: 125 psig at 150 deg F.
 - 3. Makeup-Water Piping: 80 psig at 150 deg F.
 - 4. Blowdown-Drain Piping: 200 deg F.

2.2 VALVES

A. Gate, Globe, Check, Ball, and Butterfly Valves: Comply with requirements specified in Section 230523 General-Duty Valves for HVAC Piping.

2.3 AIR-CONTROL DEVICES

- A. Manual Air Vents:
 - 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - a. Amtrol, Inc.
 - b. Armstrong Pumps, Inc.
 - c. Bell & Gossett Domestic Pump.
 - d. Nexus Valve, Inc.
 - e. Taco, Inc.
 - 2. Body: Bronze.
 - 3. Internal Parts: Nonferrous.
 - 4. Operator: Screwdriver or thumbscrew.
 - 5. Inlet Connection: NPS 1/2.
 - 6. Discharge Connection: NPS 1/8.
 - 7. CWP Rating: 150 psig.
 - 8. Maximum Operating Temperature: 225 deg F.
- B. Automatic Air Vents:
 - 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - a. Amtrol, Inc.

- b. Armstrong Pumps, Inc.
- c. Bell & Gossett Domestic Pump.
- d. Nexus Valve, Inc.
- e. Taco, Inc.
- 2. Body: Bronze or cast iron.
- 3. Internal Parts: Nonferrous.
- 4. Operator: Noncorrosive metal float.
- 5. Inlet Connection: NPS 1/2.
- 6. Discharge Connection: NPS 1/4.
- 7. CWP Rating: 150 psig.
- 8. Maximum Operating Temperature: 240 deg F.

2.4 HYDRONIC PIPING SPECIALTIES

- A. Y-Pattern Strainers:
 - 1. Body: ASTM A 126, Class B, cast iron with bolted cover and bottom drain connection.
 - 2. End Connections: Threaded ends for NPS 2 and smaller; flanged ends for NPS 2-1/2 and larger.
 - 3. Strainer Screen: Stainless-steel, 20 -mesh strainer, or perforated stainless-steel basket.
 - 4. CWP Rating: 125 psig.
- B. Stainless-Steel Bellow, Flexible Connectors:
 - 1. Body: Stainless-steel bellows with woven, flexible, bronze, wire-reinforcing protective jacket.
 - 2. End Connections: Threaded or flanged to match equipment connected.
 - 3. Performance: Capable of 3/4-inch misalignment.
 - 4. CWP Rating: 150 psig.
 - 5. Maximum Operating Temperature: 250 deg F.

PART 3 - EXECUTION

3.1 VALVE APPLICATIONS

- A. Install shutoff-duty valves at each branch connection to supply mains and at supply connection to each piece of equipment.
- B. Install valves at each branch connection to return main.
- C. Install pressure-reducing valves at makeup-water connection to regulate system fill pressure.

3.2 HYDRONIC SPECIALTIES INSTALLATION

- A. Install manual air vents at high points in piping, at heat-transfer coils, and elsewhere as required for system air venting.
- B. Install automatic air vents at high points of system piping in mechanical equipment rooms only. Install manual vents at heat-transfer coils and elsewhere as required for air venting.
- C. Install piping from boiler air outlet, air separator, or air purger to expansion tank with a 2 percent upward slope toward tank.
- D. Install expansion tanks on the floor. Vent and purge air from hydronic system, and ensure that tank is properly charged with air to suit system Project requirements.

END OF SECTION 232116

SECTION 232123 - HYDRONIC PUMPS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. Section Includes:
 - 1. Separately coupled, base-mounted, end-suction centrifugal pumps.

1.3 DEFINITIONS

- A. Buna-N: Nitrile rubber.
- B. EPT: Ethylene propylene terpolymer.

1.4 ACTION SUBMITTALS

- A. Product Data: For each type of pump. Include certified performance curves and rated capacities, operating characteristics, furnished specialties, final impeller dimensions, and accessories for each type of product indicated. Indicate pump's operating point on curves.
- B. Shop Drawings: For each pump.
 - 1. Show pump layout and connections.
 - 2. Include setting drawings with templates for installing foundation and anchor bolts and other anchorages.
 - 3. Include diagrams for power, signal, and control wiring.

1.5 CLOSEOUT SUBMITTALS

A. Operation and Maintenance Data: For pumps to include in emergency, operation, and maintenance manuals.

1.6 MAINTENANCE MATERIAL SUBMITTALS

- A. Furnish extra materials described below that match products installed and that are packaged with protective covering for storage and identified with labels describing contents.
 - 1. Mechanical Seals: One mechanical seal(s) for each pump.

PART 2 - PRODUCTS

2.1 SEPARATELY COUPLED, BASE-MOUNTED, END-SUCTION CENTRIFUGAL PUMPS

- A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - 1. Armstrong Pumps Inc.
 - 2. Aurora Pump; Division of Pentair Pump Group.
 - 3. ITT Corporation; Bell & Gossett.
 - 4. PACO Pumps.
 - 5. TACO Incorporated.
- B. Description: Factory-assembled and -tested, centrifugal, overhung-impeller, separately coupled, end-suction pump as defined in HI 1.1-1.2 and HI 1.3; designed for base mounting, with pump and motor shafts horizontal.
- C. Pump Construction:
 - 1. Casing: Radially split, cast iron, with replaceable bronze wear rings, threaded gage tappings at inlet and outlet, drain plug at bottom and air vent at top of volute, and flanged connections. Provide integral mount on volute to support the casing, and provide attached piping to allow removal and replacement of impeller without disconnecting piping or requiring the realignment of pump and motor shaft.
 - 2. Impeller: ASTM B 584, cast bronze; statically and dynamically balanced, keyed to shaft, and secured with a locking cap screw. For pumps not frequency-drive controlled, trim impeller to match specified performance.
 - 3. Pump Shaft: Stainless steel.
 - 4. Seal: Mechanical seal consisting of carbon rotating ring against a ceramic seat held by a stainless-steel spring, and Buna-N bellows and gasket.
 - 5. Seal: Packing seal consisting of stuffing box with a minimum of four rings of graphite-impregnated braided yarn with bronze lantern ring between center two graphite rings, and bronze packing gland.
 - 6. Pump Bearings: Grease-lubricated ball bearings in cast-iron housing with grease fittings.
- D. Shaft Coupling: Molded-rubber insert and interlocking spider capable of absorbing vibration. Couplings shall be drop-out type to allow disassembly and removal without removing pump shaft or motor.

- E. Coupling Guard: Dual rated; ANSI B15.1, Section 8; OSHA 1910.219 approved; steel; removable; attached to mounting frame.
- F. Mounting Frame: Welded-steel frame and cross members, factory fabricated from ASTM A 36/A 36M channels and angles. Fabricate to mount pump casing, coupling guard, and motor.
- G. Motor: Single speed, secured to mounting frame, with adjustable alignment.
 - 1. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.
 - 2. Comply with NEMA designation, temperature rating, service factor, and efficiency requirements for motors specified in Section 230513 "Common Motor Requirements for HVAC Equipment."
 - a. Enclosure: Totally enclosed, fan cooled.
 - b. Enclosure Materials: Cast aluminum.
 - c. Motor Bearings: Grease-lubricated ball bearings.
 - d. Unusual Service Conditions:
 - 1) Ambient Temperature: 105 deg F.
 - 2) Altitude: 1000 feet above sea level.
 - 3) High humidity.
 - 4) Insert conditions.
 - e. Efficiency: Premium efficient.
- H. Bearing Protection Ring: Furnish and install Aegis VFD protection ring.

2.2 PUMP SPECIALTY FITTINGS

- A. Suction Diffuser:
 - 1. 175-psig pressure rating, cast -iron body and end cap, pump-inlet fitting.
 - 2. Bronze startup and bronze or stainless-steel permanent strainers.
 - 3. Bronze or stainless-steel straightening vanes.
 - 4. Drain plug.
 - 5. Factory-fabricated support.

PART 3 - EXECUTION

3.1 EXAMINATION

A. Examine equipment foundations and anchor-bolt locations for compliance with requirements for installation tolerances and other conditions affecting performance of the Work.

- B. Examine roughing-in for piping systems to verify actual locations of piping connections before pump installation.
- C. Examine foundations and inertia bases for suitable conditions where pumps are to be installed.
- D. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 PUMP INSTALLATION

- A. Comply with HI 1.4.
- B. Install pumps to provide access for periodic maintenance including removing motors, impellers, couplings, and accessories.
- C. Independently support pumps and piping so weight of piping is not supported by pumps and weight of pumps is not supported by piping.
- D. Equipment Mounting:
 - 1. Install base-mounted pumps on cast-in-place concrete equipment bases. Comply with requirements for equipment bases and foundations specified in Section 033000 "Cast-in-Place Concrete."
 - 2. Comply with requirements for vibration isolation and seismic control devices specified in Section 230548 "Vibration and Seismic Controls for HVAC."
 - 3. Comply with requirements for vibration isolation devices specified in Section 230548.13 "Vibration Controls for HVAC."

3.3 ALIGNMENT

- A. Engage a factory-authorized service representative to perform alignment service.
- B. Comply with requirements in Hydronics Institute standards for alignment of pump and motor shaft. Add shims to the motor feet and bolt motor to base frame. Do not use grout between motor feet and base frame.
- C. Comply with pump and coupling manufacturers' written instructions.
- D. After alignment is correct, tighten foundation bolts evenly but not too firmly. Completely fill baseplate with nonshrink, nonmetallic grout while metal blocks and shims or wedges are in place. After grout has cured, fully tighten foundation bolts.

3.4 CONNECTIONS

- A. Where installing piping adjacent to pump, allow space for service and maintenance.
- B. Connect piping to pumps. Install valves that are same size as piping connected to pumps.

- C. Install suction and discharge pipe sizes equal to or greater than diameter of pump nozzles.
- D. Install check, shutoff, and throttling valves on discharge side of pumps.
- E. Install strainers and shutoff valve on suction side of pumps.
- F. Install flexible connectors on suction and discharge sides of base-mounted pumps between pump casing and valves.
- G. Install pressure gages on pump suction and discharge or at integral pressure-gage tapping, or install single gage with multiple-input selector valve.
- H. Ground equipment according to Section 260526 "Grounding and Bonding for Electrical Systems."
- I. Connect wiring according to Section 260519 "Low-Voltage Electrical Power Conductors and Cables."

3.5 STARTUP SERVICE

- A. Engage a factory-authorized service representative to perform startup service.
 - 1. Complete installation and startup checks according to manufacturer's written instructions.
 - 2. Check piping connections for tightness.
 - 3. Clean strainers on suction piping.
 - 4. Perform the following startup checks for each pump before starting:
 - a. Verify bearing lubrication.
 - b. Verify that pump is free to rotate by hand and that pump for handling hot liquid is free to rotate with pump hot and cold. If pump is bound or drags, do not operate until cause of trouble is determined and corrected.
 - c. Verify that pump is rotating in the correct direction.
 - 5. Prime pump by opening suction valves and closing drains, and prepare pump for operation.
 - 6. Start motor.
 - 7. Open discharge valve slowly.

3.6 DEMONSTRATION

A. Engage a factory-authorized service representative to train Owner's maintenance personnel to adjust, operate, and maintain hydronic pumps.

END OF SECTION 232123

THIS PAGE INTENTIONALLY LEFT BLANK

SECTION 233113 - METAL DUCTS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. Section Includes:
 - 1. Single-wall rectangular ducts and fittings.
 - 2. Single-wall round ducts and fittings.
 - 3. Sheet metal materials.
 - 4. Seismic-restraint devices.
- B. Related Sections:
 - 1. Section 230593 "Testing, Adjusting, and Balancing for HVAC" for testing, adjusting, and balancing requirements for metal ducts.
 - 2. Section 233300 "Air Duct Accessories" for dampers, sound-control devices, duct-mounting access doors and panels, turning vanes, and flexible ducts.

1.3 PERFORMANCE REQUIREMENTS

- A. Delegated Duct Design: Duct construction, including sheet metal thicknesses, seam and joint construction, reinforcements, and hangers and supports, shall comply with SMACNA's "HVAC Duct Construction Standards - Metal and Flexible" and performance requirements and design criteria indicated in "Duct Schedule" Article.
- B. Structural Performance: Duct hangers and supports and seismic restraints shall withstand the effects of gravity and seismic loads and stresses within limits and under conditions described in SMACNA's "HVAC Duct Construction Standards Metal and Flexible" ASCE/SEI 7.
 - 1. Seismic Hazard Level A: Seismic force to weight ratio, 0.48.
 - 2. Seismic Hazard Level B: Seismic force to weight ratio, 0.30.
 - 3. Seismic Hazard Level C: Seismic force to weight ratio, 0.15.

1.4 ACTION SUBMITTALS

- A. Product Data: For each type of the following products:
 - 1. Seismic-restraint devices.

B. Shop Drawings:

- 1. Fabrication, assembly, and installation, including plans, elevations, sections, components, and attachments to other work.
- 2. Factory- and shop-fabricated ducts and fittings.
- 3. Duct layout indicating sizes, configuration, liner material, and static-pressure classes.
- 4. Elevation of top of ducts.
- 5. Dimensions of main duct runs from building grid lines.
- 6. Fittings.
- 7. Reinforcement and spacing.
- 8. Seam and joint construction.
- 9. Penetrations through fire-rated and other partitions.
- 10. Equipment installation based on equipment being used on Project.
- 11. Locations for duct accessories, including dampers, turning vanes, and access doors and panels.

1.5 INFORMATIONAL SUBMITTALS

- A. Coordination Drawings: Plans, drawn to scale, on which the following items are shown and coordinated with each other, using input from installers of the items involved:
 - 1. Duct installation in congested spaces, indicating coordination with general construction, building components, and other building services. Indicate proposed changes to duct layout.
 - 2. Structural members to which duct will be attached.
 - 3. Size and location of initial access modules for acoustical tile.
 - 4. Penetrations of smoke barriers and fire-rated construction.
- B. Welding certificates.
- C. Field quality-control reports.

1.6 QUALITY ASSURANCE

- A. Welding Qualifications: Qualify procedures and personnel according to the following:
 - 1. AWS D1.1/D1.1M, "Structural Welding Code Steel," for hangers and supports.
 - 2. AWS D1.2/D1.2M, "Structural Welding Code Aluminum," for aluminum supports.
 - 3. AWS D9.1M/D9.1, "Sheet Metal Welding Code," for duct joint and seam welding.

PART 2 - PRODUCTS

2.1 SINGLE-WALL RECTANGULAR DUCTS AND FITTINGS

- A. General Fabrication Requirements: Comply with SMACNA's "HVAC Duct Construction Standards - Metal and Flexible" based on indicated static-pressure class unless otherwise indicated.
- B. Transverse Joints: Select joint types and fabricate according to SMACNA's "HVAC Duct Construction Standards - Metal and Flexible," Figure 2-1, "Rectangular Duct/Transverse Joints," for static-pressure class, applicable sealing requirements, materials involved, duct-support intervals, and other provisions in SMACNA's "HVAC Duct Construction Standards - Metal and Flexible."
- C. Longitudinal Seams: Select seam types and fabricate according to SMACNA's "HVAC Duct Construction Standards - Metal and Flexible," Figure 2-2, "Rectangular Duct/Longitudinal Seams," for static-pressure class, applicable sealing requirements, materials involved, duct-support intervals, and other provisions in SMACNA's "HVAC Duct Construction Standards - Metal and Flexible."
- D. Elbows, Transitions, Offsets, Branch Connections, and Other Duct Construction: Select types and fabricate according to SMACNA's "HVAC Duct Construction Standards - Metal and Flexible," Chapter 4, "Fittings and Other Construction," for static-pressure class, applicable sealing requirements, materials involved, duct-support intervals, and other provisions in SMACNA's "HVAC Duct Construction Standards -Metal and Flexible."

2.2 SINGLE-WALL ROUND DUCTS AND FITTINGS

- A. General Fabrication Requirements: Comply with SMACNA's "HVAC Duct Construction Standards - Metal and Flexible," Chapter 3, "Round, Oval, and Flexible Duct," based on indicated static-pressure class unless otherwise indicated.
 - 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - a. Lindab Inc.
 - b. McGill AirFlow LLC.
 - c. SEMCO Incorporated.
 - d. Sheet Metal Connectors, Inc.
 - e. Spiral Manufacturing Co., Inc.
- B. Flat-Oval Ducts: Indicated dimensions are the duct width (major dimension) and diameter of the round sides connecting the flat portions of the duct (minor dimension).

- C. Transverse Joints: Select joint types and fabricate according to SMACNA's "HVAC Duct Construction Standards - Metal and Flexible," Figure 3-1, "Round Duct Transverse Joints," for static-pressure class, applicable sealing requirements, materials involved, duct-support intervals, and other provisions in SMACNA's "HVAC Duct Construction Standards - Metal and Flexible."
 - 1. Transverse Joints in Ducts Larger Than 60 Inches in Diameter: Flanged.
- D. Longitudinal Seams: Select seam types and fabricate according to SMACNA's "HVAC Duct Construction Standards - Metal and Flexible," Figure 3-2, "Round Duct Longitudinal Seams," for static-pressure class, applicable sealing requirements, materials involved, duct-support intervals, and other provisions in SMACNA's "HVAC Duct Construction Standards - Metal and Flexible."
 - 1. Fabricate round ducts larger than 90 inches in diameter with butt-welded longitudinal seams.
 - 2. Fabricate flat-oval ducts larger than 72 inches in width (major dimension) with butt-welded longitudinal seams.
- E. Tees and Laterals: Select types and fabricate according to SMACNA's "HVAC Duct Construction Standards - Metal and Flexible," Figure 3-5, "90 Degree Tees and Laterals," and Figure 3-6, "Conical Tees," for static-pressure class, applicable sealing requirements, materials involved, duct-support intervals, and other provisions in SMACNA's "HVAC Duct Construction Standards - Metal and Flexible."

2.3 SHEET METAL MATERIALS

- A. General Material Requirements: Comply with SMACNA's "HVAC Duct Construction Standards - Metal and Flexible" for acceptable materials, material thicknesses, and duct construction methods unless otherwise indicated. Sheet metal materials shall be free of pitting, seam marks, roller marks, stains, discolorations, and other imperfections.
- B. Galvanized Sheet Steel: Comply with ASTM A 653/A 653M.
 - 1. Galvanized Coating Designation: G90.
- C. Carbon-Steel Sheets: Comply with ASTM A 1008/A 1008M, with oiled, matte finish for exposed ducts.
- D. Stainless-Steel Sheets: Comply with ASTM A 480/A 480M, Type 304 or 316, as indicated in the "Duct Schedule" Article; cold rolled, annealed, sheet. Exposed surface finish shall be No. 2B, No. 2D, No. 3, or No. 4 as indicated in the "Duct Schedule" Article.
- E. Reinforcement Shapes and Plates: ASTM A 36/A 36M, steel plates, shapes, and bars; black and galvanized.

- 1. Where black- and galvanized-steel shapes and plates are used to reinforce aluminum ducts, isolate the different metals with butyl rubber, neoprene, or EPDM gasket materials.
- F. Tie Rods: Galvanized steel, 1/4-inch minimum diameter for lengths 36 inches or less; 3/8-inch minimum diameter for lengths longer than 36 inches.

2.4 HANGERS AND SUPPORTS

- A. Steel Cables for Galvanized-Steel Ducts: Galvanized steel complying with ASTM A 603.
- B. Steel Cables for Stainless-Steel Ducts: Stainless steel complying with ASTM A 492.
- C. Trapeze and Riser Supports:
 - 1. Supports for Galvanized-Steel Ducts: Galvanized-steel shapes and plates.
 - 2. Supports for Stainless-Steel Ducts: Stainless-steel shapes and plates.

2.5 SEISMIC-RESTRAINT DEVICES

- A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - 1. Cooper B-Line, Inc.; a division of Cooper Industries.
 - 2. Ductmate Industries, Inc.
 - 3. Kinetics Noise Control.
 - 4. Mason Industries.
 - 5. TOLCO; a brand of NIBCO INC.
 - 6. Unistrut Corporation; Tyco International, Ltd.
- B. General Requirements for Restraint Components: Rated strengths, features, and applications shall be as defined in reports by an evaluation service member of the ICC Evaluation Service.
 - 1. Structural Safety Factor: Allowable strength in tension, shear, and pullout force of components shall be at least four times the maximum seismic forces to which they will be subjected.
- C. Channel Support System: Shop- or field-fabricated support assembly made of slotted steel channels rated in tension, compression, and torsion forces and with accessories for attachment to braced component at one end and to building structure at the other end. Include matching components and corrosion-resistant coating.
- D. Restraint Cables: ASTM A 492, stainless-steel cables with end connections made of cadmium-plated steel assemblies with brackets, swivel, and bolts designed for restraining cable service; and with an automatic-locking and clamping device or double-cable clips.
- E. Hanger Rod Stiffener: Reinforcing steel angle clamped to hanger rod.

F. Mechanical Anchor Bolts: Drilled-in and stud-wedge or female-wedge type. Select anchor bolts with strength required for anchor and as tested according to ASTM E 488.

PART 3 - EXECUTION

3.1 DUCT INSTALLATION

- A. Drawing plans, schematics, and diagrams indicate general location and arrangement of duct system. Indicated duct locations, configurations, and arrangements were used to size ducts and calculate friction loss for air-handling equipment sizing and for other design considerations. Install duct systems as indicated unless deviations to layout are approved on Shop Drawings and Coordination Drawings.
- B. Install ducts according to SMACNA's "HVAC Duct Construction Standards Metal and Flexible" unless otherwise indicated.
- C. Install round ducts in maximum practical lengths.
- D. Install ducts with fewest possible joints.
- E. Install factory- or shop-fabricated fittings for changes in direction, size, and shape and for branch connections.
- F. Unless otherwise indicated, install ducts vertically and horizontally, and parallel and perpendicular to building lines.
- G. Install ducts close to walls, overhead construction, columns, and other structural and permanent enclosure elements of building.
- H. Install ducts with a clearance of 1 inch, plus allowance for insulation thickness.
- I. Route ducts to avoid passing through transformer vaults and electrical equipment rooms and enclosures.
- J. Where ducts pass through non-fire-rated interior partitions and exterior walls and are exposed to view, cover the opening between the partition and duct or duct insulation with sheet metal flanges of same metal thickness as the duct. Overlap openings on four sides by at least 1-1/2 inches.
- K. Where ducts pass through fire-rated interior partitions and exterior walls, install fire dampers. Comply with requirements in Section 233300 "Air Duct Accessories" for fire and smoke dampers.
- L. Protect duct interiors from moisture, construction debris and dust, and other foreign materials. Comply with SMACNA's "IAQ Guidelines for Occupied Buildings Under Construction," Appendix G, "Duct Cleanliness for New Construction Guidelines."

3.2 INSTALLATION OF EXPOSED DUCTWORK

- A. Protect ducts exposed in finished spaces from being dented, scratched, or damaged.
- B. Trim duct sealants flush with metal. Create a smooth and uniform exposed bead. Do not use two-part tape sealing system.
- C. Grind welds to provide smooth surface free of burrs, sharp edges, and weld splatter. When welding stainless steel with a No. 3 or 4 finish, grind the welds flush, polish the exposed welds, and treat the welds to remove discoloration caused by welding.
- D. Maintain consistency, symmetry, and uniformity in the arrangement and fabrication of fittings, hangers and supports, duct accessories, and air outlets.
- E. Repair or replace damaged sections and finished work that does not comply with these requirements.

3.3 DUCT SEALING

A. Seal ducts for duct static-pressure, seal classes, and leakage classes specified in "Duct Schedule" Article according to SMACNA's "HVAC Duct Construction Standards -Metal and Flexible."

3.4 SEISMIC-RESTRAINT-DEVICE INSTALLATION

- A. Install ducts with hangers and braces designed to support the duct and to restrain against seismic forces required by applicable building codes. Comply with ASCE/SEI 7.
 - 1. Space lateral supports a maximum of 40 feet o.c., and longitudinal supports a maximum of 80 feet o.c.
 - 2. Brace a change of direction longer than 12 feet.
- B. Select seismic-restraint devices with capacities adequate to carry present and future static and seismic loads.
- C. Install cables so they do not bend across edges of adjacent equipment or building structure.
- D. Install cable restraints on ducts that are suspended with vibration isolators.
- E. Install seismic-restraint devices using methods approved by an evaluation service member of the ICC Evaluation Service.
- F. Attachment to Structure: If specific attachment is not indicated, anchor bracing and restraints to structure, to flanges of beams, to upper truss chords of bar joists, or to concrete members.
- G. Drilling for and Setting Anchors:

- 1. Identify position of reinforcing steel and other embedded items prior to drilling holes for anchors. Do not damage existing reinforcement or embedded items during drilling. Notify the Architect if reinforcing steel or other embedded items are encountered during drilling. Locate and avoid prestressed tendons, electrical and telecommunications conduit, and gas lines.
- 2. Do not drill holes in concrete or masonry until concrete, mortar, or grout has achieved full design strength.
- 3. Wedge Anchors: Protect threads from damage during anchor installation. Heavy-duty sleeve anchors shall be installed with sleeve fully engaged in the structural element to which anchor is to be fastened.
- 4. Set anchors to manufacturer's recommended torque, using a torque wrench.
- 5. Install zinc-coated steel anchors for interior applications and stainless-steel anchors for applications exposed to weather.

3.5 CONNECTIONS

- A. Make connections to equipment with flexible connectors complying with Section 233300 "Air Duct Accessories."
- B. Comply with SMACNA's "HVAC Duct Construction Standards Metal and Flexible" for branch, outlet and inlet, and terminal unit connections.

3.6 FIELD QUALITY CONTROL

- A. Perform tests and inspections.
- B. Leakage Tests:
 - 1. Comply with SMACNA's "HVAC Air Duct Leakage Test Manual." Submit a test report for each test.
 - 2. Test the following systems:
 - a. Exhaust Ducts with a Pressure Class of 3-Inch wg or Higher: Test representative duct sections, selected by Architect from sections installed, totaling no less than 50 percent of total installed duct area for each designated pressure class.
 - 3. Disassemble, reassemble, and seal segments of systems to accommodate leakage testing and for compliance with test requirements.
 - 4. Test for leaks before applying external insulation.
 - 5. Conduct tests at static pressures equal to maximum design pressure of system or section being tested. If static-pressure classes are not indicated, test system at maximum system design pressure. Do not pressurize systems above maximum design operating pressure.
 - 6. Give seven days' advance notice for testing.
- C. Duct system will be considered defective if it does not pass tests and inspections.
- D. Prepare test and inspection reports.

3.7 START UP

A. Air Balance: Comply with requirements in Section 230593 "Testing, Adjusting, and Balancing for HVAC."

3.8 DUCT SCHEDULE

- A. Exhaust Ducts:
 - 1. Ducts Connected to Equipment Not Listed Above:
 - a. Pressure Class: Positive or negative 3-inch wg.
 - b. Minimum SMACNA Seal Class: B if negative pressure, and A if positive pressure.
 - c. SMACNA Leakage Class for Rectangular: 12.

B. Elbow Configuration:

- 1. Rectangular Duct: Comply with SMACNA's "HVAC Duct Construction Standards - Metal and Flexible," Figure 4-2, "Rectangular Elbows."
 - a. Velocity 1000 fpm or Lower:
 - 1) Radius Type RE 1 with minimum 0.5 radius-to-diameter ratio.
 - 2) Mitered Type RE 4 without vanes.
 - b. Velocity 1000 to 1500 fpm:
 - 1) Radius Type RE 1 with minimum 1.0 radius-to-diameter ratio.
 - 2) Radius Type RE 3 with minimum 0.5 radius-to-diameter ratio and two vanes.
 - Mitered Type RE 2 with vanes complying with SMACNA's "HVAC Duct Construction Standards - Metal and Flexible," Figure 4-3, "Vanes and Vane Runners," and Figure 4-4, "Vane Support in Elbows."
 - c. Velocity 1500 fpm or Higher:
 - 1) Radius Type RE 1 with minimum 1.5 radius-to-diameter ratio.
 - 2) Radius Type RE 3 with minimum 1.0 radius-to-diameter ratio and two vanes.
 - Mitered Type RE 2 with vanes complying with SMACNA's "HVAC Duct Construction Standards - Metal and Flexible," Figure 4-3, "Vanes and Vane Runners," and Figure 4-4, "Vane Support in Elbows."
- 2. Rectangular Duct: Comply with SMACNA's "HVAC Duct Construction Standards Metal and Flexible," Figure 4-2, "Rectangular Elbows."
 - a. Radius Type RE 1 with minimum 1.5 radius-to-diameter ratio.

- b. Radius Type RE 3 with minimum 1.0 radius-to-diameter ratio and two vanes.
- c. Mitered Type RE 2 with vanes complying with SMACNA's "HVAC Duct Construction Standards - Metal and Flexible," Figure 4-3, "Vanes and Vane Runners," and Figure 4-4, "Vane Support in Elbows."
- 3. Round Duct: Comply with SMACNA's "HVAC Duct Construction Standards -Metal and Flexible," Figure 3-4, "Round Duct Elbows."
 - Minimum Radius-to-Diameter Ratio and Elbow Segments: Comply with SMACNA's "HVAC Duct Construction Standards - Metal and Flexible," Table 3-1, "Mitered Elbows." Elbows with less than 90-degree change of direction have proportionately fewer segments.
 - 1) Velocity 1000 fpm or Lower: 0.5 radius-to-diameter ratio and three segments for 90-degree elbow.
 - 2) Velocity 1000 to 1500 fpm: 1.0 radius-to-diameter ratio and four segments for 90-degree elbow.
 - 3) Velocity 1500 fpm or Higher: 1.5 radius-to-diameter ratio and five segments for 90-degree elbow.
 - 4) Radius-to Diameter Ratio: 1.5.
 - b. Round Elbows, 12 Inches and Smaller in Diameter: Stamped or pleated.
 - c. Round Elbows, 14 Inches and Larger in Diameter: Welded.
- C. Branch Configuration:
 - 1. Rectangular Duct: Comply with SMACNA's "HVAC Duct Construction Standards - Metal and Flexible," Figure 4-6, "Branch Connection."
 - a. Rectangular Main to Rectangular Branch: 45-degree entry.
 - b. Rectangular Main to Round Branch: Spin in.
 - 2. Round and Flat Oval: Comply with SMACNA's "HVAC Duct Construction Standards - Metal and Flexible," Figure 3-5, "90 Degree Tees and Laterals," and Figure 3-6, "Conical Tees." Saddle taps are permitted in existing duct.
 - a. Velocity 1000 fpm or Lower: 90-degree tap.
 - b. Velocity 1000 to 1500 fpm: Conical tap.
 - c. Velocity 1500 fpm or Higher: 45-degree lateral.

END OF SECTION 233113

SECTION 233300 - AIR DUCT ACCESSORIES

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. Section Includes:
 - 1. Manual volume dampers.
 - 2. Control dampers.
 - 3. Flange connectors.
 - 4. Turning vanes.
 - 5. Duct-mounted access doors.
 - 6. Flexible connectors.
 - 7. Duct accessory hardware.

1.3 ACTION SUBMITTALS

- A. Shop Drawings: For duct accessories. Include plans, elevations, sections, details and attachments to other work.
 - 1. Detail duct accessories fabrication and installation in ducts and other construction. Include dimensions, weights, loads, and required clearances; and method of field assembly into duct systems and other construction. Include the following:
 - a. Special fittings.
 - b. Manual volume damper installations.
 - c. Control-damper installations.

1.4 INFORMATIONAL SUBMITTALS

A. Coordination Drawings: Reflected ceiling plans, drawn to scale, on which ceilingmounted access panels and access doors required for access to duct accessories are shown and coordinated with each other, using input from Installers of the items involved.

1.5 CLOSEOUT SUBMITTALS

A. Operation and Maintenance Data: For air duct accessories to include in operation and maintenance manuals.

1.6 MAINTENANCE MATERIAL SUBMITTALS

A. Furnish extra materials that match products installed and that are packaged with protective covering for storage and identified with labels describing contents.

PART 2 - PRODUCTS

2.1 ASSEMBLY DESCRIPTION

- A. Comply with NFPA 90A, "Installation of Air Conditioning and Ventilating Systems," and with NFPA 90B, "Installation of Warm Air Heating and Air Conditioning Systems."
- B. Comply with SMACNA's "HVAC Duct Construction Standards Metal and Flexible" for acceptable materials, material thicknesses, and duct construction methods unless otherwise indicated. Sheet metal materials shall be free of pitting, seam marks, roller marks, stains, discolorations, and other imperfections.

2.2 MATERIALS

- A. Galvanized Sheet Steel: Comply with ASTM A 653/A 653M.
 - 1. Galvanized Coating Designation: G90.
 - 2. Exposed-Surface Finish: Mill phosphatized.
- B. Reinforcement Shapes and Plates: Galvanized-steel reinforcement where installed on galvanized sheet metal ducts; compatible materials for aluminum and stainless-steel ducts.
- C. Tie Rods: Galvanized steel, 1/4-inch minimum diameter for lengths 36 inches or less; 3/8-inch minimum diameter for lengths longer than 36 inches.

2.3 MANUAL VOLUME DAMPERS

- A. Low-Leakage, Steel, Manual Volume Dampers:
 - 1. Manufacturers: Subject to compliance with requirements, provide products by the following:
 - a. Nailor Industries Inc.
 - b. Pottorff.
 - c. Ruskin Company.
- 2. Comply with AMCA 500-D testing for damper rating.
- 3. Low-leakage rating, with linkage outside airstream, and bearing AMCA's Certified Ratings Seal for both air performance and air leakage.
- 4. Suitable for horizontal or vertical applications.
- 5. Frames:
 - a. Hat U Angle shaped.
 - b. 0.094-inch- thick, galvanized sheet steel.
 - c. Mitered and welded corners.
 - d. Flanges for attaching to walls and flangeless frames for installing in ducts.
- 6. Blades:
 - a. Multiple or single blade.
 - b. Parallel- or opposed-blade design.
 - c. Stiffen damper blades for stability.
 - d. Galvanized, roll-formed steel, 0.064 inch thick.
- 7. Blade Axles: Galvanized steel.
- 8. Bearings:
 - a. Molded synthetic.
 - b. Dampers in ducts with pressure classes of 3-inch wg or less shall have axles full length of damper blades and bearings at both ends of operating shaft.
- 9. Blade Seals: Neoprene.
- 10. Jamb Seals: Cambered stainless steel.
- 11. Tie Bars and Brackets: Galvanized steel.
- 12. Accessories:
 - a. Include locking device to hold single-blade dampers in a fixed position without vibration.
- B. Low-Leakage, Aluminum, Manual Volume Dampers:
 - 1. Manufacturers: Subject to compliance with requirements, provide products by the following:
 - a. McGill AirFlow LLC.
 - b. Nailor Industries Inc.
 - c. Pottorff.
 - d. Ruskin Company.
 - e. Vent Products Company, Inc.
 - 2. Comply with AMCA 500-D testing for damper rating.
 - 3. Low-leakage rating, with linkage outside airstream, and bearing AMCA's Certified Ratings Seal for both air performance and air leakage.
 - 4. Suitable for horizontal or vertical applications.

- 5. Frames: Hat U Angle-shaped, 0.10-inch- thick, aluminum sheet channels; frames with flanges for attaching to walls and flangeless frames for installing in ducts.
- 6. Blades:
 - a. Multiple or single blade.
 - b. Parallel- or opposed-blade design.
 - c. Roll-Formed Aluminum Blades: 0.10-inch- thick aluminum sheet.
 - d. Extruded-Aluminum Blades: 0.050-inch- thick extruded aluminum.
- 7. Blade Axles: Stainless steel.
- 8. Bearings:
 - a. Molded synthetic.
 - b. Dampers in ducts with pressure classes of 3-inch wg or less shall have axles full length of damper blades and bearings at both ends of operating shaft.
- 9. Blade Seals: Neoprene.
- 10. Jamb Seals: Cambered stainless steel.
- 11. Tie Bars and Brackets: Galvanized steel.
- 12. Accessories:
 - a. Include locking device to hold single-blade dampers in a fixed position without vibration.
- C. Jackshaft:
 - 1. Size: 1-inch diameter.
 - 2. Material: Galvanized-steel pipe rotating within pipe-bearing assembly mounted on supports at each mullion and at each end of multiple-damper assemblies.
 - 3. Length and Number of Mountings: As required to connect linkage of each damper in multiple-damper assembly.
- D. Damper Hardware:
 - 1. Zinc-plated, die-cast core with dial and handle made of 3/32-inch-thick zincplated steel, and a 3/4-inch hexagon locking nut.
 - 2. Include center hole to suit damper operating-rod size.
 - 3. Include elevated platform for insulated duct mounting.

2.4 CONTROL DAMPERS

- A. Manufacturers: Subject to compliance with requirements, provide products by the following:
 - 1. Greenheck Fan Corporation.
 - 2. McGill AirFlow LLC.
 - 3. Nailor Industries Inc.
 - 4. Pottorff.

- 5. Ruskin Company.
- B. Low-leakage rating, with linkage outside airstream, and bearing AMCA's Certified Ratings Seal for both air performance and air leakage.
- C. Frames:
 - 1. Hat U Angle shaped.
 - 2. 0.05-inch-thick stainless steel.
 - 3. Mitered and welded corners.
- D. Blades:
 - 1. Multiple blade with maximum blade width of 6 inches.
 - 2. Parallel- and opposed -blade design.
 - 3. Stainless steel.
 - 4. 0.0747-inch- thick dual skin.
 - 5. Blade Edging: Inflatable seal blade edging, or replaceable rubber seals.
- E. Blade Axles: 1/2-inch- diameter; stainless steel; blade-linkage hardware of zincplated steel and brass; ends sealed against blade bearings.
 - 1. Operating Temperature Range: From minus 40 to plus 200 deg F.
- F. Bearings:
 - 1. Molded synthetic.
 - 2. Dampers in ducts with pressure classes of 3-inch wg or less shall have axles full length of damper blades and bearings at both ends of operating shaft.
 - 3. Thrust bearings at each end of every blade.

2.5 FLANGE CONNECTORS

- A. Manufacturers: Subject to compliance with requirements, provide products by the following:
 - 1. Ductmate Industries, Inc.
 - 2. Nexus PDQ; Division of Shilco Holdings Inc.
 - 3. Ward Industries, Inc.; a division of Hart & Cooley, Inc.
- B. Description: Add-on or roll-formed, factory-fabricated, slide-on transverse flange connectors, gaskets, and components.
- C. Material: Galvanized steel.
- D. Gage and Shape: Match connecting ductwork.

2.6 TURNING VANES

- A. Manufacturers: Subject to compliance with requirements, provide products by the following:
 - 1. Ductmate Industries, Inc.
 - 2. Ward Industries, Inc.; a division of Hart & Cooley, Inc.
- B. Manufactured Turning Vanes for Metal Ducts: Curved blades of galvanized sheet steel; support with bars perpendicular to blades set; set into vane runners suitable for duct mounting.
 - 1. Acoustic Turning Vanes: Fabricate airfoil-shaped aluminum extrusions with perforated faces and fibrous-glass fill.
- C. General Requirements: Comply with SMACNA's "HVAC Duct Construction Standards - Metal and Flexible"; Figures 4-3, "Vanes and Vane Runners," and 4-4, "Vane Support in Elbows."
- D. Vane Construction: Single wall for ducts up to 48 inches wide and double wall for larger dimensions.

2.7 DUCT-MOUNTED ACCESS DOORS

- A. Manufacturers: Subject to compliance with requirements, provide products by the following:
 - 1. Ductmate Industries, Inc.
 - 2. McGill AirFlow LLC.
 - 3. Ward Industries, Inc.; a division of Hart & Cooley, Inc.

2.8 DUCT ACCESS PANEL ASSEMBLIES

- A. Manufacturers: Subject to compliance with requirements, provide products by the following:
 - 1. Ductmate Industries, Inc.
 - 2. Flame Gard, Inc.
 - 3. 3M.
- B. Labeled according to UL 1978 by an NRTL.
- C. Panel and Frame: Minimum thickness 0.0428-inch stainless steel.
- D. Fasteners: Stainless steel. Panel fasteners shall not penetrate duct wall.
- E. Gasket: Comply with NFPA 96; grease-tight, high-temperature ceramic fiber, rated for minimum 2000 deg F.
- F. Minimum Pressure Rating: 10-inch wg, positive or negative.

2.9 FLEXIBLE CONNECTORS

- A. Manufacturers: Subject to compliance with requirements, provide products by the following:
 - 1. Ductmate Industries, Inc.
 - 2. Duro Dyne Inc.
 - 3. Elgen Manufacturing.
 - 4. Ventfabrics, Inc.
 - 5. Ward Industries, Inc.; a division of Hart & Cooley, Inc.
- B. Materials: Flame-retardant or noncombustible fabrics.
- C. Coatings and Adhesives: Comply with UL 181, Class 1.
- D. High-Temperature System, Flexible Connectors: Glass fabric coated with silicone rubber.
 - 1. Minimum Weight: 16 oz./sq. yd..
 - 2. Tensile Strength: 285 lbf/inch in the warp and 185 lbf/inch in the filling.
 - 3. Service Temperature: Minus 67 to plus 500 deg F.
- E. High-Corrosive-Environment System, Flexible Connectors: Glass fabric with chemical-resistant coating.
 - 1. Minimum Weight: 14 oz./sq. yd..
 - 2. Tensile Strength: 450 lbf/inch in the warp and 340 lbf/inch in the filling.
 - 3. Service Temperature: Minus 67 to plus 500 deg F.
- F. Thrust Limits: Combination coil spring and elastomeric insert with spring and insert in compression, and with a load stop. Include rod and angle-iron brackets for attaching to fan discharge and duct.
 - 1. Frame: Steel, fabricated for connection to threaded rods and to allow for a maximum of 30 degrees of angular rod misalignment without binding or reducing isolation efficiency.
 - 2. Outdoor Spring Diameter: Not less than 80 percent of the compressed height of the spring at rated load.
 - 3. Minimum Additional Travel: 50 percent of the required deflection at rated load.
 - 4. Lateral Stiffness: More than 80 percent of rated vertical stiffness.
 - 5. Overload Capacity: Support 200 percent of rated load, fully compressed, without deformation or failure.
 - 6. Elastomeric Element: Molded, oil-resistant rubber or neoprene.
 - 7. Coil Spring: Factory set and field adjustable for a maximum of 1/4-inchmovement at start and stop.

PART 3 - EXECUTION

3.1 INSTALLATION

- Install duct accessories according to applicable details in SMACNA's "HVAC Duct Construction Standards - Metal and Flexible" for metal ducts and in NAIMA AH116, "Fibrous Glass Duct Construction Standards," for fibrous-glass ducts.
- B. Install duct accessories of materials suited to duct materials; use galvanized-steel accessories in galvanized-steel and fibrous-glass ducts, stainless-steel accessories in stainless-steel ducts, and aluminum accessories in aluminum ducts.
- C. Install control dampers at inlet of exhaust fans or exhaust ducts as close as possible to exhaust fan unless otherwise indicated.
- D. Install volume dampers at points on supply, return, and exhaust systems where branches extend from larger ducts. Where dampers are installed in ducts having duct liner, install dampers with hat channels of same depth as liner, and terminate liner with nosing at hat channel.
 - 1. Install steel volume dampers in steel ducts.
- E. Set dampers to fully open position before testing, adjusting, and balancing.
- F. Install test holes at fan inlets and outlets and elsewhere as indicated.
- G. Connect ducts to duct silencers rigidly.
- H. Install duct access doors on sides of ducts to allow for inspecting, adjusting, and maintaining accessories and equipment at the following locations:
 - 1. On both sides of duct coils.
 - 2. Upstream and downstream from duct filters.
 - 3. At outdoor-air intakes and mixed-air plenums.
 - 4. At drain pans and seals.
 - 5. Downstream from manual volume dampers, control dampers, backdraft dampers, and equipment.
 - 6. At each change in direction and at maximum 50-foot spacing.
 - 7. Upstream and downstream from turning vanes.
 - 8. Control devices requiring inspection.
 - 9. Elsewhere as indicated.
- I. Access Door Sizes:
 - 1. Two-Hand Access: 12 by 6 inches.
- J. Label access doors according to Section 230553 "Identification for HVAC Piping and Equipment" to indicate the purpose of access door.
- K. Install flexible connectors to connect ducts to equipment.

L. Install thrust limits at centerline of thrust, symmetrical on both sides of equipment. Attach thrust limits at centerline of thrust and adjust to a maximum of 1/4inchmovement during start and stop of fans.

3.2 FIELD QUALITY CONTROL

- A. Tests and Inspections:
 - 1. Operate dampers to verify full range of movement.
 - 2. Inspect locations of access doors and verify that purpose of access door can be performed.
 - 3. Inspect turning vanes for proper and secure installation.

END OF SECTION 233300

THIS PAGE INTENTIONALLY LEFT BLANK

SECTION 236416 - CENTRIFUGAL WATER CHILLERS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. Section Includes:
 - 1. Packaged, water-cooled, electric-motor-driven centrifugal chillers.

1.3 DEFINITIONS

- A. BAS: Building automation system.
- B. COP: Coefficient of performance. The ratio of the rate of heat removal to the rate of energy input using consistent units for any given set of rating conditions.
- C. EER: Energy-efficiency ratio. The ratio of the cooling capacity given in terms of Btu/h to the total power input given in terms of watts at any given set of rating conditions.
- D. IPLV: Integrated part-load value. A single-number part-load efficiency figure of merit calculated per the method defined by ARI 506/110 and referenced to ARI standard rating conditions.
- E. kW/Ton: The ratio of total power input of the chiller in kilowatts to the net refrigerating capacity in tons at any given set of rating conditions.
- F. NPLV: Nonstandard part-load value. A single-number part-load efficiency figure of merit calculated per the method defined by ARI 506/110 and intended for operating conditions other than the ARI standard rating conditions.

1.4 ACTION SUBMITTALS

- A. Product Data: For each type of product indicated. Include refrigerant, rated capacities, operating characteristics, furnished specialties, and accessories.
 - 1. Performance at ARI standard conditions and at conditions indicated.
 - 2. Performance at ARI standard unloading conditions.
 - 3. Minimum evaporator flow rate.
 - 4. Refrigerant capacity of chiller.

- 5. Oil capacity of chiller.
- 6. Fluid capacity of evaporator, condenser.
- 7. Characteristics of safety relief valves.
- 8. Minimum entering condenser-fluid temperature.
- 9. Performance at varying capacities with constant design condenser-fluid temperature. Repeat performance at varying capacities for different condenser-fluid temperatures from design to minimum in 5 deg F increments.
- B. Shop Drawings: Include plans, elevations, sections, details, and attachments to other work.
 - 1. Detail equipment assemblies and indicate dimensions, weights, load distribution, required clearances, method of field assembly, components, and location and size of each field connection.
 - 2. Wiring Diagrams: For power, signal, and control wiring.

1.5 INFORMATIONAL SUBMITTALS

- A. Coordination Drawings: Floor plans, drawn to scale, on which the following items are shown and coordinated with each other, using input from installers of the items involved:
 - 1. Structural supports.
 - 2. Piping roughing-in requirements.
 - 3. Wiring roughing-in requirements, including spaces reserved for electrical equipment.
 - 4. Access requirements, including working clearances for mechanical controls and electrical equipment, and tube pull and service clearances.
- B. Seismic Qualification Certificates: For chillers, accessories, and components, from manufacturer.
 - 1. Basis for Certification: Indicate whether withstand certification is based on actual test of assembled components or on calculation.
 - 2. Dimensioned Outline Drawings of Equipment Unit: Identify center of gravity and locate and describe mounting and anchorage provisions.
 - 3. Detailed description of equipment anchorage devices on which the certification is based and their installation requirements.
- C. Startup service reports.

1.6 CLOSEOUT SUBMITTALS

A. Operation and Maintenance Data: For each chiller to include in emergency, operation, and maintenance manuals.

- 1.7 QUALITY ASSURANCE
 - A. ARI Certification: Certify chiller according to ARI 550 certification program.
 - B. ARI Rating: Rate chiller performance according to requirements in ARI 506/110.
 - C. ASHRAE Compliance:
 - 1. ASHRAE 15 for safety code for mechanical refrigeration.
 - 2. ASHRAE 147 for refrigerant leaks, recovery, and handling and storage requirements.
 - D. ASHRAE/IESNA Compliance: Applicable requirements in ASHRAE/IESNA 90.1.
 - E. ASME Compliance: Fabricate and label chillers to comply with ASME Boiler and Pressure Vessel Code: Section VIII, Division 1, as applicable to chiller design. For chillers charged with R-134a refrigerant, include an ASME U-stamp and nameplate certifying compliance.
 - F. Comply with NFPA 70.
 - G. Comply with requirements of UL and UL Canada, and include label by a qualified testing agency showing compliance.

1.8 DELIVERY, STORAGE, AND HANDLING

- A. Ship chillers from the factory fully charged with refrigerant.
- B. Ship each chiller with a full charge of refrigerant. Charge each chiller with nitrogen if refrigerant is shipped in containers separate from chiller.
- C. Ship each oil-lubricated chiller with a full charge of oil.
 - 1. Ship oil factory installed in chiller.
- D. Package chiller for export shipping in totally enclosed bagging.

1.9 COORDINATION

A. Coordinate sizes and locations of concrete bases with actual equipment provided. Cast anchor-bolt inserts into bases.

1.10 WARRANTY

- A. Special Warranty: Manufacturer's standard form in which manufacturer agrees to repair or replace components of chillers that fail in materials or workmanship within specified warranty period.
 - 1. Extended warranties include, but are not limited to, the following:

- a. Complete chiller including refrigerant and oil charge.
- 2. Warranty Period: Ten years from date of Substantial Completion.

PART 2 - PRODUCTS

2.1 MANUFACTURERS

- A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - 1. Trane CVHF OSP-0168-10

2.2 MANUFACTURED UNIT

- A. Description: Factory-assembled and -tested chiller complete with compressor, compressor motor, compressor motor controller, lubrication system evaporator, condenser, controls, interconnecting unit piping and wiring, and indicated accessories.
 - 1. Disassemble chiller into major assemblies as required by the installation after factory testing and before packaging for shipment.
 - 2. Units requiring tear down and rebuilding in field for access requirements shall be sole responsibility of bidding contractor and manufacturer to provide a wholly functional and operational machine, OSHPD approval and full 10 year warranty coverage.

2.3 COMPRESSOR-DRIVE ASSEMBLY

- A. Description: Single-stage or multistage, variable-displacement, centrifugal-type compressor driven by an electric motor.
 - 1. Where indicated, provide oil-free compressor technology using a permanent magnet synchronous motor, magnetic bearings, integral variable frequency controller, and digital electronic controls.
- B. Compressor:
 - 1. Casing: Cast iron, precision ground.
 - 2. Impeller: High-strength cast aluminum or cast-aluminum alloy on carbon- or alloy-steel shaft.
- C. Drive: Direct-drive, hermetic design using an electric motor as the driver.
- D. Compressor Motor:
 - 1. Continuous-duty, squirrel-cage, induction-type, two-pole motor with energy efficiency required to suit chiller energy efficiency indicated.

- 2. Factory mounted, aligned, and balanced as part of compressor assembly before shipping.
- 3. Motor shall be of sufficient capacity to drive compressor throughout entire operating range without overload and with sufficient capacity to start and accelerate compressor without damage.
- 4. Provide motor with thermistor or RTD in each of three-phase motor windings to monitor temperature and report information to chiller control panel.
- 5. Provide motor with thermistor or RTD to monitor bearing temperature and report information to chiller control panel.
- 6. Provide open-drive motor with internal electric heater, internally powered from chiller power supply.
- E. Vibration Balance: Balance chiller compressor and drive assembly to provide a precision balance that is free of noticeable vibration over the entire operating range.
 - 1. Overspeed Test: 25 percent above design operating speed.
- F. Service: Easily accessible for inspection and service.
 - 1. Compressor's internal components shall be accessible without having to remove compressor-drive assembly from chiller.
 - 2. Provide lifting lugs or eyebolts attached to casing.
- G. Economizers: For multistage chillers, provide interstage economizers.
- H. Capacity Control: Modulating, variable-inlet, guide-vane assembly combined with hot-gas bypass, if necessary, to achieve performance indicated.
 - 1. Maintain stable operation that is free of surge, cavitation, and vibration throughout range of operation. Configure to achieve most energy-efficient operation possible.
 - 2. Operating Range: From 100 to 5 percent of design capacity.
 - 3. Condenser-Fluid Unloading Requirements over Operating Range: Drop-in entering condenser-fluid temperature of 2.5 deg F for each 10 percent in capacity reduction.
 - 4. Chillers with variable frequency controllers shall modulate compressor speed with variable-inlet, guide-vane control to achieve optimum energy efficiency.
- I. Oil Lubrication System: Consisting of pump, filtration, heater, cooler, factory-wired power connection, and controls.
 - 1. Provide lubrication to bearings, gears, and other rotating surfaces at all operating, startup, coastdown, and standby conditions including power failure.
 - 2. Manufacturer's standard method to remove refrigerant from oil.
 - 3. Dual oil filers, one redundant, shall be the easily replaceable cartridge type, minimum 0.5-micron efficiency, with means of positive isolation while servicing.
 - 4. Refrigerant- or water-cooled oil cooler.
 - 5. Factory-installed and pressure-tested piping with isolation valves and accessories.
 - 6. Oil compatible with refrigerant and chiller components.
 - 7. Positive visual indication of oil level.

2.4 REFRIGERATION

- A. Refrigerant:
 - 1. Type: R-123; ASHRAE 34, Class B1.
 - 2. Compatibility: Chiller parts exposed to refrigerants shall be fully compatible with refrigerants, and pressure components shall be rated for refrigerant pressures.
- B. Refrigerant Flow Control: Manufacturer's standard refrigerant flow-control device satisfying performance requirements indicated.
- C. Pressure Relief Device:
 - 1. Comply with requirements in ASHRAE 15 and in applicable portions of ASME Boiler and Pressure Vessel Code: Section VIII, Division 1.
 - 2. For Chillers Using R-123: Rupture disc constructed of frangible carbon.
- D. Refrigeration Transfer: Provide service valves and other factory-installed accessories required to facilitate transfer of refrigerant from chiller to a remote refrigerant storage and recycling system. Comply with requirements in ASHRAE 15 and ASHRAE 147.
- E. Purge System:
 - 1. For chillers operating at subatmospheric pressures (using R-123 refrigerant), factory install an automatic purge system for collection and return of refrigerant and lubricating oil and for removal of noncondensables including, but not limited to, water, water vapor, and noncondensable gases.
 - 2. System shall be a thermal purge design, refrigerant or air cooled, equipped with a carbon filter that includes an automatic regeneration cycle.
 - 3. Factory wire to chiller's main power supply and system complete with controls, piping, and refrigerant valves to isolate the purge system from the chiller.
 - 4. Construct components of noncorrodible materials.
 - 5. Controls shall interface with chiller control panel to indicate modes of operation, set points, data reports, diagnostics, and alarms.
 - 6. Efficiency of not more than 0.02 lb of refrigerant per pound of air when rated according to ARI 580.
 - 7. Operation independent of chiller per ASHRAE 147.
- F. Positive-Pressure System:
 - 1. For chillers operating at subatmospheric pressures (using R-123 refrigerant), factory install an automatic positive-pressure system.
 - 2. During nonoperational periods, positive-pressure system shall automatically maintain a positive pressure for atmosphere in the refrigerant pressure vessel of not less than 0.5 psig adjustable up to a pressure that remains within the vessel design pressure limits.
 - 3. System shall be factory wired and include controller, electric heat, pressure transmitter, or switch.

2.5 EVAPORATOR

- A. Description: Shell-and-tube design with water in tubes and refrigerant surrounding tubes within shell. Shell is separate from condenser.
- B. Shell Material: Carbon-steel rolled plates with continuously welded seams or seamless pipe.
- C. Designed to prevent liquid refrigerant carryover from entering compressor.
- D. Provide evaporator with sight glass or other form of positive visual verification of liquid-refrigerant level.
- E. Tubes:
 - 1. Individually replaceable from either end and without damage to tube sheets and other tubes.
 - 2. Mechanically expanded into end sheets and physically attached to intermediate tube sheets.
 - 3. Material: Copper.
 - 4. Nominal OD: 3/4 inch.
 - 5. Minimum Wall Thickness: Manufacturer's choice .
 - 6. External Finish: Manufacturer's standard.
 - 7. Internal Finish: Enhanced.
- F. End Tube Sheets: Continuously welded to each end of shell; drilled and reamed to accommodate tubes with positive seal between fluid in tubes and refrigerant in shell.
- G. Intermediate Tube Sheets: Installed in shell and spaced along length of tube at intervals required to eliminate vibration and to avoid contact of tubes resulting in abrasion and wear.
- H. Additional Corrosion Protection:
 - 1. Electrolytic corrosion-inhibitor anode.
 - 2. Coat wetted surfaces with a corrosion-resistant finish.
 - 3. Using same material as tubes, clad surfaces of end tube sheets in contact with fluid. Coat other wetted surfaces, including water boxes, with a corrosion-resistant finish.

2.6 CONDENSER

- A. Description: Shell-and-tube design with water in tubes and refrigerant surrounding tubes within shell. Shell is separate from evaporator.
- B. Shell Material: Carbon-steel rolled plates with continuously welded seams or seamless pipe.
- C. Designed to prevent direct impingement of high-velocity hot gas from compressor discharge on tubes.

- D. Provide condenser with sight glass or other form of positive visual verification of refrigerant charge and condition.
- E. Tubes:
 - 1. Individually replaceable from either end and without damage to tube sheets and other tubes.
 - 2. Mechanically expanded into end sheets and physically attached to intermediate tube sheets.
 - 3. Material: Copper.
 - 4. Nominal OD: 1 inch.
 - 5. Minimum Wall Thickness: Manufacturer's choice .
 - 6. External Finish: Manufacturer's standard.
 - 7. Internal Finish: Enhanced.
- F. End Tube Sheets: Continuously welded to each end of shell; drilled and reamed to accommodate tubes with positive seal between fluid in tubes and refrigerant in shell.
- G. Intermediate Tube Sheets: Installed in shell and spaced along length of tube at intervals required to eliminate vibration and to avoid contact of tubes resulting in abrasion and wear.

2.7 INSULATION

- A. Closed-cell, flexible elastomeric thermal insulation complying with ASTM C 534, Type I for tubular materials and Type II for sheet materials.
 - 1. Thickness: 1-1/2 inches.
- B. Adhesive: As recommended by insulation manufacturer.
- C. Factory-applied insulation over all cold surfaces of chiller capable of forming condensation. Components shall include, but not be limited to, evaporator shell and end tube sheets, evaporator water boxes including nozzles, refrigerant suction pipe from evaporator to compressor, cold surfaces of compressor, refrigerant-cooled motor, and auxiliary piping.
 - 1. Apply adhesive to 100 percent of insulation contact surface.
 - 2. Before insulating steel surfaces, prepare surfaces for paint, and prime and paint as indicated for other painted components. Do not insulate unpainted steel surfaces.
 - 3. Seal seams and joints to provide a vapor barrier.
 - 4. After adhesive has fully cured, paint exposed surfaces of insulation to match other painted parts.

2.8 ELECTRICAL

A. Factory installed and wired, and functionally tested at factory before shipment.

- B. Terminal blocks with numbered and color-coded wiring to match wiring diagram. Spare wiring terminal block for connection to external controls or equipment.
- C. Factory-installed wiring outside of enclosures shall be in metal raceway except make terminal connections with not more than a 24-inch length of liquidtight conduit.
- D. Factory install and wire capacitor bank for the purpose of power factor correction to 0.95 at all operating conditions.
 - 1. If capacitors are mounted in a dedicated enclosure, use same NEMA enclosure type as motor controller. Provide enclosure with service entrance knockouts and bushings for conduit.
 - 2. Capacitors shall be non-PCB dielectric fluid, metallized electrode design, low loss with low-temperature rise. The kVAr ratings shall be indicated and shall not exceed the maximum limitations set by NFPA 70. Provide individual cells as required.
 - 3. Provide each cell with current-limiting replaceable fuses and carbon-film discharge resistors to reduce residual voltage to less than 50 V within one minute after de-energizing.
 - 4. Provide a ground terminal and a terminal block or individual connectors for phase connection.

2.9 VARIABLE FREQUENCY CONTROLLER

- A. Drive shall be a remote mount assembly as provided by Trane under the compliance of OSHPD certification OSP-0168-10
- B. Motor controller shall be factory provided and remote mounted and wired to chiller to provide a single-point, field-power termination to the chiller and its auxiliaries.
- C. Description: NEMA ICS 2; listed and labeled as a complete unit and arranged to provide variable speed by adjusting output voltage and frequency.
- D. Enclosure: Unit mounted, NEMA 250, Type 12, with hinged full-front access door with lock and key.
- E. Integral Disconnecting Means: Door-interlocked, NEMA AB 1, instantaneous-trip circuit breaker with lockable handle. Minimum withstand rating shall be as required by electrical power distribution system, but not less than 65,000 A.
- F. Technology: Pulse width modulated (PWM) output with insulated gate bipolar transistors (IGBT); suitable for variable torque loads.
- G. Controller shall consist of a rectifier converter section, a digital/analog driver regulator section, and an inverter output section.
 - 1. Rectifier section shall be a full-wave diode bridge that changes fixed-voltage, fixed-frequency, ac line power to a fixed dc voltage. Silicon controller rectifiers, current source inverters, and paralleling of devices are unacceptable. Rectifier shall be insensitive to phase rotation of the ac line.

- 2. Regulator shall provide full digital control of frequency and voltage.
- 3. Inverter section shall change fixed dc voltage to variable-frequency, variable ac voltage, for application to a squirrel-cage motor. Inverter shall produce a sine-coded, pulse width modulated (PWM) output wave form and shall conduct no radio-frequency interference back to the input power supply.
- H. Output Rating: Three phase; with voltage proportional to frequency throughout voltage range.
- I. Operating Requirements:
 - 1. Input AC Voltage Tolerance: 460-V ac, plus 10 percent or 506 V maximum.
 - 2. Input frequency tolerance of 60 Hz, plus or minus 2 Hz.
 - 3. Capable of driving full load, without derating, under the following conditions:
 - a. Ambient Temperature: 0 to 50 deg C.
 - b. Relative Humidity: Up to 95 percent (noncondensing).
 - c. Altitude: 1000 feet.
 - 4. Minimum Efficiency: 96 percent at 60 Hz, full load.
 - 5. Minimum Displacement Primary-Side Power Factor: 95 percent without harmonic filter, 98 percent with harmonic filter.
 - 6. Overload Capability: 1.05 times the full-load current for 7 seconds.
 - 7. Starting Torque: As required by compressor-drive assembly.
 - 8. Speed Regulation: Plus or minus 1 percent.
 - 9. Isolated control interface to allow controller to follow control signal over a 10:1 speed range.
 - 10. To avoid equipment resonant vibrations, provide critical speed lockout circuitry to allow bands of operating frequency at which controller shall not operate continuously.
 - 11. Capable of being restarted into a motor coasting in either the forward or reverse direction without tripping.
- J. Internal Adjustability Capabilities:
 - 1. Minimum Output Frequency: 6 Hz.
 - 2. Maximum Output Frequency: 60 Hz.
 - 3. Acceleration: 2 seconds to a minimum of 60 seconds.
 - 4. Deceleration: 2 seconds to a minimum of 60 seconds.
 - 5. Current Limit: 30 percent to a minimum of 100 percent of maximum rating.
- K. Self-Protection and Reliability Features: Subjecting the controller to any of the following conditions shall not result in component failure or the need for replacement:
 - 1. Overtemperature.
 - 2. Short circuit at controller output.
 - 3. Ground fault at controller output. Variable frequency controller shall be able to start a grounded motor.
 - 4. Open circuit at controller output.
 - 5. Input undervoltage.
 - 6. Input overvoltage.

- 7. Loss of input phase.
- 8. Reverse phase.
- 9. AC line switching transients.
- 10. Instantaneous overload, line to line or line to ground.
- 11. Sustained overload exceeding 100 percent of controller rated current.
- 12. Starting a rotating motor.
- L. Motor Protection: Controller shall protect motor against overvoltage and undervoltage, phase loss, reverse phase, overcurrent, overtemperature, and ground fault.
- M. Automatic Reset and Restart: Capable of three restarts after controller fault or on return of power after an interruption and before shutting down for manual reset or fault correction. Controller shall be capable of automatic restart on phase-loss and overvoltage and undervoltage trips.
- N. Visual Indication: On face of controller enclosure or chiller control enclosure; indicating the following conditions:
 - 1. Power on.
 - 2. Run.
 - 3. Overvoltage.
 - 4. Line fault.
 - 5. Overcurrent.
 - 6. External fault.
 - 7. Motor speed (percent).
 - 8. Fault or alarm status (code).
 - 9. DC-link voltage.
 - 10. Motor output voltage.
 - 11. Input kilovolt amperes.
 - 12. Total power factor.
 - 13. Input kilowatts.
 - 14. Input kilowatt-hours.
 - 15. Three-phase input voltage.
 - 16. Three-phase output voltage.
 - 17. Three-phase input current.
 - 18. Three-phase output current.
 - 19. Three-phase input voltage total harmonic distortion.
 - 20. Three-phase input current total harmonic distortion.
 - 21. Output frequency (Hertz).
 - 22. Elapsed operating time (hours).
 - 23. Diagnostic and service parameters.
- O. Operator Interface: At controller or chiller control panel; with start-stop and automanual selector with manual-speed-control potentiometer.
- P. Control Signal Interface:
 - 1. Electric Input Signal Interface: A minimum of two analog inputs (0 to 10 V or 0/4-20 mA) and six programmable digital inputs.

- Q. Active Harmonic Distortion Filter: Factory mounted and wired to limit total voltage and current distortion to 5 percent.
- R. Input Line Conditioning: <Insert requirements>.
- S. Cooling: Air, refrigerant, or water cooled.
- T. Accessories: Devices shall be factory installed in controller enclosure unless otherwise indicated.
 - 1. Control Relays: Auxiliary and adjustable time-delay relays.
- U. Chiller Capacity Control Interface: Equip chiller with adaptive control logic to automatically adjust the compressor motor speed and the compressor pre-rotation inlet vane position independently to achieve maximum part-load efficiency in response to sensor inputs that are integral to the chiller controls.

2.10 CONTROLS

- A. Control: Standalone and microprocessor based, with all memory stored in nonvolatile memory so that reprogramming is not required on loss of electrical power.
- B. Enclosure: Unit mounted, NEMA 250, Type 12, hinged or lockable; factory wired with a single-point, field-power connection and a separate control circuit.
- C. Operator Interface: Multiple-character digital or graphic display with dynamic update of information and with keypad or touch-sensitive display located on front of control enclosure. In either imperial or metric units selectable through the interface, display the following information:
 - 1. Date and time.
 - 2. Operating or alarm status.
 - 3. Fault history with not less than last 10 faults displayed.
 - 4. Set points of controllable parameters.
 - 5. Trend data.
 - 6. Operating hours.
 - 7. Number of chiller starts.
 - 8. Outdoor-air temperature or space temperature if required for chilled-water reset.
 - 9. Entering- and leaving-fluid temperatures of evaporator and condenser.
 - 10. Difference in fluid temperatures of evaporator and condenser.
 - 11. Fluid flow of evaporator and condenser.
 - 12. Fluid pressure drop of evaporator and condenser.
 - 13. Refrigerant pressures in evaporator and condenser.
 - 14. Refrigerant saturation temperature in evaporator and condenser shell.
 - 15. Compressor refrigerant suction and discharge temperature.
 - 16. Compressor bearing temperature.
 - 17. Motor bearing temperature.
 - 18. Motor winding temperature.
 - 19. Oil temperature.
 - 20. Oil discharge pressure.

- 21. Phase current.
- 22. Percent of motor rated load amperage.
- 23. Phase voltage.
- 24. Demand power (kilowatts).
- 25. Energy use (kilowatt-hours).
- 26. Power factor.
- 27. For chillers equipped with variable frequency controllers and harmonic filters, include the following:
 - a. Output voltage and frequency.
 - b. Voltage total harmonic distortion for each phase.
 - c. Supply current total demand distortion for each phase.
 - d. Inlet vane position.
 - e. Controller internal ambient temperature.
 - f. Heatsink temperature.
- 28. Purge suction temperature if purge system is provided.
- 29. Purge elapsed time if purge system is provided.
- D. Control Functions:
 - 1. Manual or automatic startup and shutdown time schedule.
 - 2. Entering and leaving chilled-water temperatures, control set points, and motor load limits. Evaporator fluid temperature shall be reset based on return-water temperature.
 - 3. Current limit and demand limit.
 - 4. Condenser-fluid temperature.
 - 5. External chiller emergency stop.
 - 6. Variable evaporator flow.
 - 7. Thermal storage.
- E. Manually Reset Safety Controls: The following conditions shall shut down chiller and require manual reset:
 - 1. Low evaporator pressure; high condenser pressure.
 - 2. Low evaporator fluid temperature.
 - 3. Low oil differential pressure.
 - 4. High or low oil pressure.
 - 5. High oil temperature.
 - 6. High compressor-discharge temperature.
 - 7. Loss of condenser-fluid flow.
 - 8. Loss of evaporator fluid flow.
 - 9. Motor overcurrent.
 - 10. Motor overvoltage.
 - 11. Motor undervoltage.
 - 12. Motor phase reversal.
 - 13. Motor phase failure.
 - 14. Sensor- or detection-circuit fault.
 - 15. Processor communication loss.
 - 16. Motor controller fault.
 - 17. Extended compressor surge.

- 18. Excessive air-leakage detection for chillers using R-123 refrigerant.
- F. Trending: Capability to trend analog data of up to five parameters simultaneously over an adjustable period and frequency of polling.
- G. Security Access: Provide electronic security access to controls through identification and password with at least three levels of access: view only; view and operate; and view, operate, and service.
- H. Control Authority: At least four conditions: Off, local manual control at chiller, local automatic control at chiller, and automatic control through a remote source.
- I. Communication Port: RS-232 port, USB 2.0 port, or equivalent connection capable of connecting a printer.
- J. BAS Interface: Factory-installed hardware and software to enable the BAS to monitor, control, and display chiller status and alarms.
 - 1. Hardwired Points:
 - a. Monitoring: On-off status, common trouble alarm electrical power demand (kilowatts) electrical power consumption (kilowatt-hours)power factor.
 - b. Control: On-off operation, chilled-water, discharge temperature set-point adjustment electrical power demand limit.
 - 2. Future Capability ASHRAE 135 (BACnet) LonTalk Modbus Industry-accepted, open-protocol communication interface with the BAS shall enable the BAS operator to remotely control and monitor the chiller from an operator workstation. Control features and monitoring points displayed locally at chiller control panel shall be available through the BAS.

2.11 FINISH

- A. Paint chiller, using manufacturer's standard procedures, except comply with the following minimum requirements:
 - 1. Provide at least one coat of primer with a total dry film thickness of at least 2 mils.
 - 2. Provide at least two coats of alkyd-modified, vinyl enamel finish with a total dry film thickness of at least 4 mils.
 - 3. Paint surfaces that are to be insulated before applying the insulation.
 - 4. Paint installed insulation to match adjacent uninsulated surfaces.
 - 5. Color of finish coat to be manufacturer's standard.

2.12 ACCESSORIES

A. Flow Switches:

- 1. Chiller manufacturer shall furnish a switch for each evaporator and condenser and verify field-mounting location before installation.
- 2. Pressure Differential Switches:
 - a. Construction: Wetted parts of body and trim constructed of Type 316 stainless steel.
 - b. Performance: Switch shall withstand, without damage, the full-pressure rating of the heat exchanger applied to either port and exhibit zero set-point shift due to variation in working pressure.
 - c. Set Point: Screw type, field adjustable.
 - d. Electrical Connections: Internally mounted screw-type terminal blocks.
 - e. Switch Enclosure: NEMA 250, Type 4.
 - f. Switch Action: Double-pole, double-throw switch with one pole field wired to the chiller control panel and the other pole field wired to the BAS.
- B. Vibration Isolation:
 - 1. Neoprene Pad:
 - a. Two layers of 0.375-inch- thick, ribbed- or waffle-pattern neoprene pads separated by a 16-gage, stainless-steel plate.
- C. Tool Kit: Chiller manufacturer shall assemble a tool kit specially designed for use in serving the chiller(s) furnished. Include special tools required to service chiller components not readily available to Owner service personnel in performing routine maintenance. Place tools in a lockable case with hinged cover. Provide a list of each tool furnished and attach the list to underside of case cover.

2.13 SOURCE QUALITY CONTROL

- A. Perform functional run tests of chillers before shipping.
- B. Factory performance test chillers, before shipping, according to ARI 506/110.
 - 1. Test the following conditions:
 - a. Design conditions indicated.
 - b. At five point(s) of varying part-load performance to be selected by Owner at time of test.
 - 2. Allow Owner access to place where chillers are being tested. Notify Architect 14 days in advance of testing.
- C. For chillers using R-123 refrigerant, factory test and inspect evaporator and condenser according to ASME Boiler and Pressure Vessel Code: Section VIII, Division 1. Pressure test fluid side of heat exchangers, including water boxes, to 1.5 times the rated pressure. Pressure proof test refrigerant side of heat exchangers to a minimum of 45 psig. Vacuum and pressure test for leaks.

PART 3 - EXECUTION

3.1 EXAMINATION

- A. Examine chillers before installation. Reject chillers that are damaged.
- B. Examine roughing-in for equipment support, anchor-bolt sizes and locations, piping, and electrical connections to verify actual locations, sizes, and other conditions affecting chiller performance, maintenance, and operations before equipment installation.
 - 1. Final chiller locations indicated on Drawings are approximate. Determine exact locations before roughing-in for piping and electrical connections.
- C. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 CHILLER INSTALLATION

- A. Equipment Mounting:
 - 1. Install chillers on cast-in-place concrete equipment bases. Comply with requirements for equipment bases and foundations specified in Section 033000 "Cast-in-Place Concrete."
 - 2. Comply with requirements for vibration isolation devices specified in Section 230548.13 "Vibration Controls for HVAC."
- B. Maintain manufacturer's recommended clearances for service and maintenance.
- C. Charge chiller with refrigerant and fill with oil if not factory installed.
- D. Install separate devices furnished by manufacturer and not factory installed.

3.3 CONNECTIONS

- A. Comply with requirements for piping specified in Section 232113 "Hydronic Piping," Section 232116 Hydronic Piping Specialties," and Section 232300 "Refrigerant Piping." Drawings indicate general arrangement of piping, fittings, and specialties.
- B. Install piping adjacent to chiller to allow service and maintenance.
- C. Evaporator Fluid Connections: Connect to evaporator inlet with shutoff valve, strainer, thermometer, and plugged tee with pressure gage. Connect to evaporator outlet with shutoff valve, balancing valve, flexible connector, flow switch, thermometer, plugged tee with shutoff valve and pressure gage, flow meter, and drain connection with valve. Make connections to chiller with a flange.

- D. Condenser-Fluid Connections: Connect to condenser inlet with shutoff valve, strainer, thermometer, and plugged tee with pressure gage. Connect to condenser outlet with shutoff valve, balancing valve, flow switch, thermometer, plugged tee with shutoff valve and pressure gage, flow meter, and drain connection with valve. Make connections to chiller with a flange.
- E. Refrigerant Pressure Relief Device Connections: For chillers installed indoors, extend separate vent piping for each chiller to the outdoors without valves or restrictions. Comply with ASHRAE 15. Connect to chiller pressure relief device with flexible connector and dirt leg with drain valve.
- F. For chillers equipped with a purge system, extend separate purge vent piping for each chiller to the outdoors. Comply with ASHRAE 15 and ASHRAE 147.
- G. Connect each chiller drain connection with a union and drain pipe, and extend pipe, full size of connection, to floor drain. Provide a shutoff valve at each connection.

3.4 STARTUP SERVICE

- A. Engage a factory-authorized service representative to perform startup service.
 - 1. Complete installation and startup checks according to manufacturer's written instructions.
 - 2. Verify that refrigerant charge is sufficient and chiller has been leak tested.
 - 3. Verify that pumps are installed and functional.
 - 4. Verify that thermometers and gages are installed.
 - 5. Operate chiller for run-in period.
 - 6. Check bearing lubrication and oil levels.
 - 7. Verify that refrigerant pressure relief device is vented outside.
 - 8. Verify proper motor rotation.
 - 9. Verify static deflection of vibration isolators, including deflection during chiller startup and shutdown.
 - 10. Verify and record performance of fluid flow and low-temperature interlocks for evaporator and condenser.
 - 11. Verify and record performance of chiller protection devices.
 - 12. Test and adjust controls and safeties. Replace damaged or malfunctioning controls and equipment.
- B. Inspect field-assembled components, equipment installation, and piping and electrical connections for proper assembly, installation, and connection.
- C. Prepare test and inspection startup reports.

3.5 DEMONSTRATION

A. Engage a factory-authorized service representative to train Owner's maintenance personnel to adjust, operate, and maintain chillers. Video record the training sessions.

END OF SECTION 236416

SECTION 236500 - COOLING TOWERS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. Section Includes:
 - 1. Open-circuit, induced-draft, crossflow cooling towers.

1.3 DEFINITIONS

- A. BMS: Building management system.
- B. FRP: Fiber-reinforced polyester.

1.4 PERFORMANCE REQUIREMENTS

- A. Delegated Design: Design cooling tower support structure and seismic restraints, including comprehensive engineering analysis by a qualified professional engineer, using performance requirements and design criteria indicated.
- B. Structural Performance: Cooling tower support structure shall withstand the effects of gravity loads and the following loads and stresses within limits and under conditions indicated according to SEI/ASCE 7.
 - 1. Criteria: To be determined during Delegated Design .
- C. Seismic Performance: Cooling towers shall withstand the effects of earthquake motions determined according to SEI/ASCE 7.
 - 1. The term "withstand" means "the unit will remain in place without separation of any parts from the device when subjected to the seismic forces specified and the unit will be fully operational after the seismic event."

1.5 ACTION SUBMITTALS

- A. Product Data: For each type of product indicated. Include rated capacities, pressure drop, fan performance data, rating curves with selected points indicated, furnished specialties, and accessories.
 - 1. Maximum flow rate.
 - 2. Minimum flow rate.
 - 3. Drift loss as percent of design flow rate.
 - 4. Sound power levels in eight octave bands for operation with fans off, fans at minimum, and design speed.
 - 5. Performance curves for the following:
 - a. Varying entering-water temperatures from design to minimum.
 - b. Varying ambient wet-bulb temperatures from design to minimum.
 - c. Varying water flow rates from design to minimum.
 - d. Varying fan operation (off, minimum, and design speed).
 - 6. Fan airflow, brake horsepower, and drive losses.
 - 7. Motor amperage, efficiency, and power factor at 100, 75, 50, and 25 percent of nameplate horsepower.
 - 8. Electrical power requirements for each cooling tower component requiring power.
- B. Shop Drawings: Complete set of manufacturer's prints of cooling tower assemblies, control panels, sections and elevations, and unit isolation. Include the following:
 - 1. Assembled unit dimensions.
 - 2. Weight and load distribution.
 - 3. Required clearances for maintenance and operation.
 - 4. Sizes and locations of piping and wiring connections.
 - 5. Wiring Diagrams: For power, signal, and control wiring.

1.6 INFORMATIONAL SUBMITTALS

- A. Coordination Drawings: Floor plans, drawn to scale, on which the following items are shown and coordinated with each other, using input from Installers of the items involved:
 - 1. Structural supports.
 - 2. Piping roughing-in requirements.
 - 3. Wiring roughing-in requirements, including spaces reserved for electrical equipment.
 - 4. Access requirements, including working clearances for mechanical controls and electrical equipment, and tube pull and service clearances.
- B. Seismic Qualification Certificates: For cooling towers, accessories, and components, from manufacturers.
 - 1. Basis for Certification: Indicate whether withstand certification is based on actual test of assembled components or on calculation.
 - 2. Dimensioned Outline Drawings of Equipment Unit: Identify center of gravity and locate and describe mounting and anchorage provisions.

- 3. Detailed description of equipment anchorage devices on which the certification is based and their installation requirements.
- C. Startup service reports.

1.7 CLOSEOUT SUBMITTALS

A. Operation and Maintenance Data: For each cooling tower to include in emergency, operation, and maintenance manuals.

1.8 QUALITY ASSURANCE

- A. Testing Agency Qualifications: Certified by CTI.
- B. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.
- C. CTI Certification: Cooling tower thermal performance according to CTI STD 201, "Certification Standard for Commercial Water-Cooling Towers Thermal Performance."
- D. FMG approval and listing in the latest edition of FMG's "Approval Guide."

1.9 COORDINATION

A. Coordinate sizes, locations, and anchoring attachments of structural-steel support structures.

1.10 WARRANTY

- A. Special Warranty: Manufacturer's standard form in which manufacturer agrees to repair or replace the following components of cooling towers that fail in materials or workmanship within specified warranty period:
 - 1. Fan assembly including fan, drive, and motor.
 - 2. All components of cooling tower.
 - 3.
 - 4. Warranty Period: Five years from date of Substantial Completion.

PART 2 - PRODUCTS

2.1 OPEN-CIRCUIT, INDUCED-DRAFT, CROSSFLOW COOLING TOWERS

- A. Products: Subject to compliance with requirements, provide the following:
- B. Basis-of-Design Product: Subject to compliance with requirements, provide product indicated on Drawings or comparable product by one of the following:

- 1. Baltimore Aircoil Company; Series 3000.
- C. Fabricate cooling tower mounting base with reinforcement strong enough to resist cooling tower movement during a seismic event when cooling tower is anchored to field support structure.
- D. Cooling tower designed to resist wind load of 30 lbf/sq. ft..
- E. Casing and Frame:
 - 1. Casing and Frame Material: Galvanized steel, ASTM A 653/A 653M, G235 coating .
 - 2. Frame Material: .
 - 3. Fasteners: Galvanized steel.
 - 4. Joints and Seams: Sealed watertight.
 - 5. Welded Connections: Continuous and watertight.
- F. Collection Basin:
 - 1. Material: Stainless steel.
 - 2. Removable stainless-steel strainer with openings smaller than nozzle orifices.
 - 3. Overflow and drain connections.
 - 4. Makeup water connection.
 - 5. Outlet Connection: ASME B16.5, Class 150 flange.
- G. Electric/Electronic, Collection Basin Water-Level Controller with Solenoid Valve:
 - 1. Enclosures: NEMA 250, Type 4X.
 - 2. Sensor: Solid-state controls with multiple electrode probes and relays factory wired to a terminal strip to provide control of water makeup valve, low- and high-level alarms, and output for shutoff of pump on low level.
 - 3. Electrode Probes: Stainless steel.
 - 4. Water Stilling Chamber: Corrosion-resistant material .
 - 5. Solenoid Valve: Slow closing with stainless-steel body, controlled and powered through level controller in response to water-level set point.
 - 6. Electrical Connection Requirements: 120 V, single phase, 60 Hz.
- H. Gravity Water Distribution Basin: Nonpressurized design with head of water level in basin adequate to overcome spray nozzle losses and designed to evenly distribute water over fill throughout the flow range indicated.
 - 1. Material: Stainless steel.
 - 2. Location: Over each bank of fill with easily replaceable plastic spray nozzles mounted in bottom of basin.
 - 3. Inlet Connection: ASME B16.5, Class 150 flange.
 - 4. Joints and Seams: Sealed watertight.
 - 5. Removable Panels: Same material as basin to completely cover top of basin. Secure panels to basin with removable corrosion-resistant hardware.
 - 6. Single-Inlet, Field Pipe Connection: Galvanized-steel pipe arranged to provide balancing of flow within cooling tower cell without the need for additional balancing valves. Pipe each cooling tower cell internally to a single, field connection suitable for mating to ASME B16.5, Class 150 flange and located on the bottom unless otherwise indicated.

- I. Fill:
 - 1. Materials: PVC, with maximum flame-spread index of 5 according to ASTM E 84.
 - 2. Fabrication: Fill-type sheets, fabricated, formed, and bonded together after forming into removable assemblies that are factory installed by manufacturer.
- J. Drift Eliminator:
 - 1. Material: PVC; with maximum flame-spread index of 5 according to ASTM E 84.
 - 2. UV Treatment: Inhibitors to protect against damage caused by UV radiation.
 - 3. Configuration: Multipass, designed and tested to reduce water carryover to achieve performance indicated.
 - 4. Location: Integral to fill.
- K. Air-Intake Louvers:
 - 1. Material: FRP.
 - 2. UV Treatment: Inhibitors to protect against damage caused by UV radiation.
 - 3. Louver Blades: Arranged to uniformly direct air into cooling tower, to minimize air resistance, and to prevent water from splashing out of tower during all modes of operation including operation with fans off.
 - 4. Location: Integral to fill.
- L. Axial Fan: Balanced at the factory after assembly.
 - 1. Blade Material: Aluminum.
 - 2. Hub Material: Aluminum.
 - 3. Protective Enclosure: Removable, galvanized-steel, wire-mesh screens complying with OSHA regulations.
 - 4. Fan Shaft Bearings: Self-aligning ball or roller bearings with moisture-proof seals and premium, moisture-resistant grease suitable for temperatures between minus 20 and plus 300 deg F. Bearings designed for an L-10 life of 50,000 hours.
 - 5. Bearings Grease Fittings: Extended lubrication lines to an easily accessible location.
- M. Belt Drive:
 - 1. Service Factor: 1.5 based on motor nameplate horsepower.
 - 2. Sheaves: Fan and motor shafts shall have taper-lock sheaves fabricated from corrosion-resistant materials.
 - 3. Belt: Multiple V-belt design with a matched set of cogged belts.
 - 4. Belt Material: Oil resistant, nonstatic conducting, and constructed of neoprene polyester cord.
 - 5. Belt-Drive Guard: Comply with OSHA regulations.
- N. Fan Motor:
 - 1. General Requirements for Fan Motors: Comply with NEMA designation and temperature-rating requirements specified in Section 230513 "Common Motor Requirements for HVAC Equipment" and not indicated below.
 - 2. Motor Enclosure: Totally enclosed air over (TEAO).
 - 3. Energy Efficiency: NEMA Premium Efficient.

- 4. Service Factor: 1.15.
- 5. Insulation: Class H.
- 6. Variable-Speed Motors: Inverter-duty rated per NEMA MG-1, Section IV, "Performance Standard Applying to All Machines," Part 31, "Definite-Purpose, Inverter-Fed, Polyphase Motors."
- 7. Motor Base: Adjustable, or other suitable provision for adjusting belt tension.
- O. Fan Discharge Stack: Material shall match casing, manufacturer's standard design.
- P. Vibration Switch: For each fan drive.
 - 1. Enclosure: NEMA 250, Type 4X.
 - 2. Vibration Detection: Sensor with a field-adjustable, acceleration-sensitivity set point in a range of 0 to 1 g and frequency range of 0 to 3000 cycles per minute. Cooling tower manufacturer shall recommend switch set point for proper operation and protection.
 - 3. Provide switch with manual-reset button for field connection to a BMS and hardwired connection to fan motor electrical circuit.
 - 4. Switch shall, on sensing excessive vibration, signal an alarm through the BMS and shut down the fan.
- Q. Controls: Comply with requirements in Section 230923 "Direct Digital Control (DDC) System for HVAC."
- R. Personnel Access Components:
 - 1. Doors: Large enough for personnel to access cooling tower internal components from both cooling tower end walls. Doors shall be operable from both sides of the door.
 - 2. External Ladders with Safety Cages: Aluminum, galvanized- or stainless-steel, fixed ladders with ladder extensions to access external platforms and top of cooling tower from adjacent grade without the need for portable ladders. Comply with 29 CFR 1910.27.
 - 3. External Platforms with Handrails: Aluminum, FRP, or galvanized-steel bar grating at cooling tower access doors when cooling towers are elevated and not accessible from grade.
 - 4. Handrail: Aluminum, galvanized steel, or stainless steel complete with kneerail and toeboard, around top of cooling tower. Comply with 29 CFR 1910.23.
 - 5. Internal Platforms: Aluminum, FRP, or galvanized-steel bar grating.
 - a. Elevated internal platforms with handrails accessible from fixed vertical ladders to access the fan drive assembly when out of reach from collection basin platform.

2.2 SOURCE QUALITY CONTROL

A. Verification of Performance: Test and certify cooling tower performance according to CTI STD 201, "Certification Standard for Commercial Water-Cooling Towers Thermal Performance."

PART 3 - EXECUTION

3.1 EXAMINATION

- A. Before cooling tower installation, examine roughing-in for tower support, anchor-bolt sizes and locations, piping, and electrical connections to verify actual locations, sizes, and other conditions affecting tower performance, maintenance, and operation.
 - 1. Cooling tower locations indicated on Drawings are approximate. Determine exact locations before roughing-in for piping and electrical connections.
- B. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 INSTALLATION

- A. Install cooling towers on support structure indicated.
- B. Equipment Mounting:
 - 1. Comply with requirements for vibration isolation and seismic control devices specified in Section 230548 "Vibration and Seismic Controls for HVAC."
 - 2. Comply with requirements for vibration isolation devices specified in Section 230548.13 "Vibration Controls for HVAC."
- C. Install anchor bolts to elevations required for proper attachment to supported equipment.
- D. Maintain manufacturer's recommended clearances for service and maintenance.
- E. Loose Components: Install electrical components, devices, and accessories that are not factory mounted.

3.3 CONNECTIONS

- A. Piping installation requirements are specified in other Sections. Drawings indicate general arrangement of piping, fittings, and specialties.
- B. Install piping adjacent to cooling towers to allow service and maintenance.
- C. Provide drain piping with valve at cooling tower drain connections and at low points in piping.
- D. Connect cooling tower overflows and drains, and piping drains to sanitary sewage system.
- E. Domestic Water Piping: Comply with applicable requirements in Section 221116 "Domestic Water Piping." Connect to water-level control with shutoff valve and union, flange, or mechanical coupling at each connection.

F. Supply and Return Piping: Comply with applicable requirements in Section 232113 "Hydronic Piping" and Section 232116 Hydronic Piping Specialties." Connect to entering cooling tower connections with shutoff valve, balancing valve, thermometer, plugged tee with pressure gage, flow meter, and drain connection with valve. Connect to leaving cooling tower connection with shutoff valve. Make connections to cooling tower with a mechanical coupling.

3.4 FIELD QUALITY CONTROL

- A. Testing Agency: Engage a qualified testing agency to perform tests and inspections.
- B. Tests and Inspections: Comply with CTI ATC 105, "Acceptance Test Code for Water Cooling Towers."
- C. Cooling towers will be considered defective if they do not pass tests and inspections.
- D. Prepare test and inspection reports.

3.5 STARTUP SERVICE

- A. Engage a factory-authorized service representative to perform startup service.
- B. Inspect field-assembled components, equipment installation, and piping and electrical connections for proper assemblies, installations, and connections.
- C. Obtain performance data from manufacturer.
 - 1. Complete installation and startup checks according to manufacturer's written instructions and perform the following:
 - a. Clean entire unit including basins.
 - b. Verify that accessories are properly installed.
 - c. Verify clearances for airflow and for cooling tower servicing.
 - d. Check for vibration isolation and structural support.
 - e. Lubricate bearings.
 - f. Verify fan rotation for correct direction and for vibration or binding and correct problems.
 - g. Adjust belts to proper alignment and tension.
 - h. Operate variable-speed fans through entire operating range and check for harmonic vibration imbalance. Set motor controller to skip speeds resulting in abnormal vibration.
 - i. Check vibration switch setting. Verify operation.
 - j. Verify water level in tower basin. Fill to proper startup level. Check makeup water-level control and valve.
 - k. Verify that cooling tower air discharge is not recirculating air into tower or HVAC air intakes. Recommend corrective action.
 - 1. Replace defective and malfunctioning units.
- D. Start cooling tower and associated water pumps. Follow manufacturer's written starting procedures.

E. Prepare a written startup report that records the results of tests and inspections.

3.6 ADJUSTING

- A. Set and balance water flow to each tower inlet.
- B. Adjust water-level control for proper operating level.
- 3.7 DEMONSTRATION
 - A. Engage a factory-authorized service representative to train Owner's maintenance personnel to adjust, operate, and maintain cooling towers.

END OF SECTION 236500

THIS PAGE INTENTIONALLY LEFT BLANK
SECTION 26 05 00 - COMMON WORK RESULTS FOR ELECTRICAL

PART 1 -GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division01Specification Sections, apply to this Section.

1.2 SUMMARY

- A. Section Includes:
- 1. Electrical equipment coordination and installation.
- 2. Access Panels
- 3. Common electrical installation requirements.

1.3 DEFINITIONS

- A. Code. National, State and Local Electrical codes including OSHA requirements.
- B. Concealed, Exterior Installations: Concealed from view and protected from weather conditions and physical contact by building occupants but subject to outdoor ambient temperatures. Examples include installations within unheated shelters.
- C. Exposed, Exterior Installations: Exposed to view outdoors or subject to outdoor ambient temperatures and weather conditions. Examples include rooftop locations.
- D. Finished Spaces: Spaces other than mechanical and electrical equipment rooms, furred spaces, pipe chases, unheated spaces immediately below roof, spaces above ceilings, unexcavated spaces, crawlspaces, and tunnels.
- E. Low voltage: 50 to 600 volts.
- F. Medium voltage: 601 to 35,000 volts.
- G. Provide. Furnish, install and wire ready for service.
- H. Signal voltage. CEC class 1, 2, or 3 remote control, signaling, or power limited circuits.

1.4 SCOPE

A. Drawings and Specifications form complementary requirements; provide work specified and not shown, and work shown and not specified as though explicitly required by both. Although work may not be specifically shown or specified, provide supplementary or miscellaneous items, appurtenances, devices and materials obviously necessary for a sound, secure and complete installation.

- B. It is the intent that these Specifications and associated Drawings establish minimum requirements for products and equipment with the intent to provide electrical service, distribution and systems finished, tested and ready for operation. Incidental detail that is not shown or specified, but necessary for proper installation and operation shall be included in the work and in these Contractor's estimates, the same as if specified. Locations of all equipment and material shall be adjusted at no extra cost to the Owner, to accommodate the work interferences anticipated and/or encountered. Prior to installation, determine the exact route and location of each raceway and piece of equipment to minimize conflicts with other trades.
- C. Information and components shown on riser diagrams but not shown on plans, and vice versa, shall be provided as if expressly required on both.
- D. It is the requirement of these Contract Documents to have the contractors provide systems and components that are fully complete, operational and suitable for the intended use. There may be situations in the documents where insufficient information exists to precisely describe a certain component or subsystem, or the routing of a component or its coordination with other building elements. In cases such as this, where the Contractor has failed to notify the Architect of the situation in accordance with Paragraph (A) above, the Contractor shall include in their bid the specific components or subsystems with all parts necessary for the intended use, fully complete and operational, and installed in workmanlike manner either concealed or exposed per the design intent.

1.5 MODIFICATIONS IN LAYOUT

- A. Drawings are intended to outline the scope of work required and are not intended to be installation drawings. Drawings are not intended to be absolutely precise; they are not intended to specify or to show every offset, fitting, and component nor do they show the exact routings. The purpose of the drawings is to indicate a systems concept, the main components of the systems, and the approximate geometrical relationships. Based on the systems concept, the main components, and the approximate geometrical relationships, the contractor shall provide all other components and materials necessary to make the systems fully complete and operational, nor do they show the exact routings and locations needed to coordinate with structure and other trades and to meet Architectural requirements.
- B. Unless specifically stated to the contrary, no measurement of an electric drawing derived by scaling shall be used as a dimension to work by. Dimensions noted on the electric drawings are subject to measurements of adjacent and previously completed work. Measurements shall be performed prior to the actual installation of equipment.
- C. Prior to installation of visible material and equipment (including access panels) in finished spaces, review Architectural Drawings for desired locations and where not definitely indicated, request information from Architect.
- D. Check Contract Documents, as well as, Submittals and Shop Drawings of all subcontractors to verify and coordinate spaces in which work of Divisions 21 through 28 will be installed.
- E. Make reasonable modifications in layout and components needed to prevent conflict with work of other trades. Systems shall be run parallel with or perpendicular to major architectural and structural building elements.

F. Where conflicts or potential conflicts exist and engineering guidance is desired, submit sketch of proposed resolution to Architect for review and approval.

1.6 COORDINATION

- A. Coordinate arrangement, mounting, and support of equipment and raceways:
 - 1. To maintain maximum headroom; all piping, duct, conduit and associated components to be as tight as possible to underside of structure to provide for ease of disconnecting the equipment with minimum interference to other installations.
 - 2. To allow right of way for piping installed at required slope.
 - 3. To allow connecting raceways, cables, wireways, cable trays, and busways to be clear of obstructions and of the working and access space of other equipment.
- B. Coordinate installation of required supporting devices and set sleeves in cast-in-place concrete, masonry walls, and other structural components as they are constructed.
- C. Coordinate location of access panels and doors for electrical items that are behind finished surfaces or otherwise concealed. Access doors and panels are specified in Division08 Section "Access Panels and Frames."

1.7 COORDINATION DRAWINGS

- A. When included as part of the Contract Documents, there shall be full cooperation and coordination of all specialty trades.
- B. This Division's contractors shall comply fully with the requirements set forth in the Division 23 Section "Coordination Drawings" specification section.

1.8 MAINTENANCE MANUALS AND OPERATING INSTRUCTIONS

- A. Comply fully with the requirements set forth in the Division 01 Section "Operation and Maintenance Data".
- B. Obtain at time of purchase of equipment, three copies of operation, lubrication and maintenance manuals for all items. Assemble literature in a coordinated manual using loose leaf sheets in a three ring binder(s). Manual shall contain names and addresses of manufacturers and local representatives who stock or furnish repair parts for items or equipment.
- C. The manuals shall include the following and shall have an index of contents and tabs for each Specification Section and each piece of equipment specified in that Section and be provided in the order listed below, per Specification Section.
 - 1. Copies of all approved submittals/shop drawings.
 - 2. Manufacturer's operating and maintenance instructions and parts lists of all items or equipment. Where manufacturer's data includes several types or models, the applicable type or model shall be clearly designated.
 - 3. Startup and shutdown procedures.
 - 4. Test records.
 - 5. Wiring diagrams.

- 6. Lubrication instructions detailing type of lubricant, amount, and intervals recommended by manufacturer for each item of equipment.
- 7. Owner's written acknowledgement of satisfactory completion of instruction period.
- 1.9 SUBMITTAL PROCEDURE AND FORMAT
 - A. This Paragraph supplements Division 1.
 - B. Submittal Cover Sheet

SHOP DRAWING COVER SHEET

PROJECT:CONTRACTOR:

DIVISION NO .: SECTION NO .:

DESCRIPTION:

CONTRACT DRAWING REFERENCE NO:

EQUIPMENT TAG:

SUBMISSION (CIRCLE ONE): FIRST, SECOND, THIRD, FOURTH

DATE:

INFORMATION AND CHECKLIST

1.Contractor's Log #ID

2.Name, address, and phone number of supplier.

3.	Are all specified or scheduled items included and exactly match scheduled/specified items?	Yes	No
4.	Is this item a substitution?	Yes	No
5.	Are deviations clearly identified?	Yes	No
6.	Does equipment fit space shown on construction documents, coordination drawings, and actual field conditions?	Yes	No
7.	Has support, erection, weights, and installation been coordinated with all trades?	Yes	No
8.	Does the proposed installation void warranties and/or violate UL or code requirements?	Yes	No
9.	Does this material/equipment add expense to any other trade or project costs?	Yes	No
10.	Does equipment require interface with other trades? List divisions and specifics requiring	Yes	No

coordination?

Is control interface coordinated?
 List electrical characteristics (V/Ph/A)

Yes No

- 1. Shop Drawings showing layouts of systems shall contain sufficient plans, elevations, sections, details and schematics to describe work clearly. They shall be 1/4 inches = 1 foot 0 inch scale unless specified otherwise.
- 2. Shop drawings and submittals showing manufacturer's product data shall contain detailed dimensional drawings, accurate and complete description of materials of construction, manufacturer's published performance characteristics and capacity ratings (performance data, alone, is not acceptable), electrical requirements and wiring diagrams. Drawings shall clearly indicate location (terminal block or wire number), voltage and function for all field terminations, and other information necessary to demonstrate compliance with all requirements of Contract Documents.
- 3. Provide shop drawing submittals showing details of piping connections to ALL equipment. If connection details are not submitted and connections are found to be installed incorrectly in the field, this contractor shall reinstall them within the original contract price.
- 4. Shop drawings for different systems and equipment shall be bound separately by specification section as indicated above and not bound by manufacturer. Each separate submittal shall have its own transmittal and cover letter. Submittals which contain different specification section systems bound together shall be returned un-reviewed for re-submittal.
- 5. Lighting Fixture shop drawings shall consist of two submittals, one for interior lighting and one for exterior lighting. Each submittal shall have all associated light fixtures included. Separate submittals grouped by manufacturer or supplier shall not be accepted. The contractor shall be responsible for coordinating drawings from his various suppliers in order to comply with this requirement.

1.10 QUALITY ASSURANCE

- A. Acceptable Manufacturers
 - The Engineer's design for each product is based on the manufacturer listed in the schedule or shown on the drawings. In Part 2 of some technical specifications, other manufacturers are listed as being acceptable. The listing of a manufacturer as acceptable does not imply automatic approval. It is the sole responsibility of the Contractor to ensure that any submittals made are for products that meet or exceed the specifications included herein. These are acceptable only if, as a minimum, they:
 - a. Meet all performance criteria listed in the schedules and outlined in the specification.
 - b. Have identical operating characteristics to those called for in the specification. For example, a two-stroke diesel generator will not be acceptable if a four-stroke model is specified.
 - c. Fit within the available space it was designed for, including space for maintenance and component removal, with no modification to either the space or the product. Clearances to walls, ceilings and other equipment will be at least equal to those shown on the design drawings. The fact that a manufacturer's

name appears as

acceptable shall not be taken to mean that the Engineer has determined that the manufacturer's products will fit within the available space -this determination is solely the responsibility of the contractor.

- d. Products must adhere to all architectural considerations including but not limited to: being of the same color as the product scheduled or specified, fitting within architectural enclosures and details, and for diffusers, lighting and plumbing fixtures -being the same size and of the same physical appearance as scheduled or specified products.
- B. All equipment shall be labeled or listed by the National Board of Underwriters Laboratories (U.L.) or other recognized listing/testing agency where such labeling or listing exists for such material.
- C. All electrical components, devices and accessories shall be listed and labeled as defined in the California Electrical Code (CEC), by a testing agency acceptable to authorities having jurisdiction, and marked for intended use. Skid-mounted or packaged assemblies shall be listed and labeled as an assembly, not just the individual components.

1.11 CONTINUITY OF UTILITY SERVICES

- A. In the absence of specific requirements in Division 1, comply with the following procedures for shut-downs.
 - 1. Provide temporary services where project construction schedule requires extended shut downs of existing building equipment and/or systems. Temporary services include the necessary equipment and/or systems to maintain continuity of services. Extended shut downs are interruptions of existing services for a period of time longer than that acceptable to the Owner.
 - 2. Contractor shall coordinate any shutdowns of existing building, equipment and/or systems as follows:
 - 3. Give proper notice to Owner when making shutdowns; a minimum of fourteen full days is required.
 - 4. Minimize timeline of shutdowns of any system.
 - 5. Provide temporary services where required and perform shutdowns and tie-ins at a time convenient to Owner.
- B. Contractor shall be responsible for completing and filing the Owner's shutdown notice questionnaire.
- C. Perform required survey and inspection work required by the notice for shutdown.
- D. All life safety systems shall be returned to service at the end of each work day, when work is being performed on the systems. It is the responsibility of the Contractor to provide all associated appurtenances necessary to ensure that the systems are in proper working condition at all times.

1.12 DELIVERY, STORAGE, AND HANDLING

- A. Protect equipment/materials from damage during shipping, storage, handling and installation. Delivery equipment/materials to the site in manufacturer's original, unopened containers and packaging, with labels clearly indicating manufacturer and material.
- B. The Contractor shall provide for enclosed storage, when equipment/materials are stored on-site and prior to building "dry-in", to prevent any damage resulting from inclement weather or construction traffic. Specialties shall not be stored outdoors.
- C. Equipment/materials, stored or installed, found to be damaged shall be replaced with new by the Contractor, to the satisfaction of the Owner and at no additional expense. Do not store equipment with PVC material with exposure to direct sunlight.

PART 2 PRODUCTS

- 2.1 SLEEVES FOR RACEWAYS AND CABLES
 - A. Steel Pipe Sleeves: ASTMA53/A53M, Type E, Grade B, Schedule 40, galvanized steel, plain ends.
 - B. Sleeves for Rectangular Openings: Galvanized sheet steel.
 - 1. Minimum Metal Thickness:
 - a. For sleeve cross-section rectangle perimeter less than 50 inches and no side more than 16 inches, thickness shall be 0.052 inch.
 - b. For sleeve cross-section rectangle perimeter equal to, or more than, 50 inches and 1 or more sides equal to, or more than, 16 inches, thickness shall be 0.138 inch.

2.2 SLEEVE SEALS

- A. Description: Modular sealing device, designed for field assembly, to fill annular space between sleeve and raceway or cable.
 - 1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 - a. Advance Products & Systems, Inc.
 - b. Calpico, Inc.
 - c. Metraflex Co.
 - d. Pipeline Seal and Insulator, Inc.
 - e. Unique Firestop Systems
 - 2. Sealing Elements: EPDM interlocking links shaped to fit surface of cable or conduit. Include type and number required for material and size of raceway or cable.
 - 3. Pressure Plates: Plastic . Include two for each sealing element.
 - 4. Connecting Bolts and Nuts: Carbon steel with corrosion-resistant coating of length required to secure pressure plates to sealing elements. Include one for each sealing element.

- A. Nonmetallic, Shrinkage-Resistant Grout: ASTMC1107, factory-packaged, nonmetallic aggregate grout, noncorrosive, nonstaining, mixed with water to consistency suitable for application and a 30-minute working time.
- 2.4 CEILING ACCESS AND ACCESS PANELS
 - A. Access panels are generally not shown on the drawings, but they are required to be provided by Contractor.
 - B. Access panels shall be of size required to provide adequate access to equipment. Minimum size shall be 12" X 12" for hand access or 24" X 24" for body access. Minimum 16 gauge frame, not less than 18 gauge hinged door panel. Door locks shall be screwdriver operated for panels in general location applications and shall be key locked for public area applications.
 - C. Furnish access panels for installation under other Sections valves or other items installed under this Division require access and are concealed in floor, wall, furred space or above ceiling. Access panels shall be by Milcor, Knapp, Nystorm or Inland Steel; coordinate selection with other Sections supplying similar access panels. Color of panel shall be selected by the Architect.
 - D. Panels shall include concealed hinges, cam type locking devices, and shall have a frame border type necessary for the particular wall or ceiling construction in which they are installed. Access panels shall be flush mounted, recessed frame type units. Access panels shall be prime coated steel, for field painting for general applications and stainless steel for use in toilet rooms, shower rooms, and similar wet locations.
 - E. Access panels shall have same fire rating classification as surface penetrated. Rated access panels must have U.L. Label.

PART 3 EXECUTION

- 3.1 COMMON REQUIREMENTS FOR ELECTRICAL INSTALLATION
 - A. Comply with NECA1 Standard Practices for Good Workmanship in Electrical Contracting.
 - B. Measure indicated mounting heights to bottom of unit for suspended items and to center of unit for wall-mounting items.
 - C. Headroom Maintenance: If mounting heights or other location criteria are not indicated, arrange and install components and equipment to provide maximum possible headroom consistent with these requirements.
 - D. Equipment: Install to facilitate service, maintenance, and repair or replacement of components of both electrical equipment and other nearby installations. Connect in such a way as to facilitate future disconnecting with minimum interference with other items in the vicinity.
 - E. Right of Way: Give to piping systems installed at a required slope.
- 3.2 SLEEVE INSTALLATION FOR ELECTRICAL PENETRATIONS
 - A. Electrical penetrations occur when raceways, cables, wireways, cable trays, or busways

COMMON WORK RESULTS FOR ELECTRICAL 17-0475 - Cuningham Group Architecture, Inc. penetrate concrete slabs, concrete or masonry walls, or fire-rated floor and wall assemblies.

- B. Concrete Slabs and Walls: Install sleeves for penetrations unless core-drilled holes or formed openings are used. Install sleeves during erection of slabs and walls.
- C. Use pipe sleeves unless penetration arrangement requires rectangular sleeved opening.
- D. Fire-Rated Assemblies: Install sleeves for penetrations of fire-rated floor and wall assemblies unless openings compatible with firestop system used are fabricated during construction of floor or wall.
- E. Cut sleeves to length for mounting flush with both surfaces of walls.
- F. Extend sleeves installed in floors 2 inches above finished floor level.
- G. Size pipe sleeves to provide 1/4-inch annular clear space between sleeve and raceway or cable, unless indicated otherwise.
- H. Seal space outside of sleeves with grout for penetrations of concrete and masonry
 - 1. Promptly pack grout solidly between sleeve and wall so no voids remain. Tool exposed surfaces smooth; protect grout while curing.
- I. Interior Penetrations of Non-Fire-Rated Walls and Floors: Seal annular space between sleeve and raceway or cable, using joint sealant appropriate for size, depth, and location of joint. Comply with requirements in Division07 Section "Joint Sealants.".
- J. Fire-Rated-Assembly Penetrations: Maintain indicated fire rating of walls, partitions, ceilings, and floors at raceway and cable penetrations. Install sleeves and seal raceway and cable penetration sleeves with firestop materials. Comply with requirements in Division07 Section "Penetration Firestopping."
- K. Roof-Penetration Sleeves: Seal penetration of individual raceways and cables with flexible boot-type flashing units applied in coordination with roofing work.
- L. Aboveground, Exterior-Wall Penetrations: Seal penetrations using steel pipe sleeves and mechanical sleeve seals. Select sleeve size to allow for1-inch annular clear space between pipe and sleeve for installing mechanical sleeve seals.
- M. Underground, Exterior-Wall Penetrations: Install cast-iron pipe sleeves. Size sleeves to allow for 1-inch annular clear space between raceway or cable and sleeve for installing mechanical sleeve seals.
- N. Coordinate sleeve selection and application with selection and application of firestopping specified in Division07 Section "Penetration Firestopping."
- O. Concrete Slabs and Walls: Install sleeves for penetrations unless core-drilled holes or formed openings are used. Install sleeves during erection of slabs and walls.
- P. Use pipe sleeves unless penetration arrangement requires rectangular sleeved opening.
- Q. Rectangular Sleeve Minimum Metal Thickness:
 - 1. For sleeve rectangle perimeter less than 50 inches and no side greater than 16 inches, thickness shall be 0.052 inch.

- 2. For sleeve rectangle perimeter equal to, or greater than, 50 inches and 1 or more sides equal to, or greater than, 16 inches, thickness shall be 0.138 inch.
- R. Fire-Rated Assemblies: Install sleeves for penetrations of fire-rated floor and wall assemblies unless openings compatible with firestop system used are fabricated during construction of floor or wall.
- S. Cut sleeves to length for mounting flush with both wall surfaces.
- T. Extend sleeves installed in floors 2 inches above finished floor level.
- U. Size pipe sleeves to provide 1/4-inch annular clear space between sleeve and cable unless sleeve seal is to be installed.
- V. Seal space outside of sleeves with grout for penetrations of concrete and masonry and with approved joint compound for gypsum board assemblies.
- W. Interior Penetrations of Non-Fire-Rated Walls and Floors: Seal annular space between sleeve and cable, using joint sealant appropriate for size, depth, and location of joint according to Division07 Section "Joint Sealants."
- X. Fire-Rated-Assembly Penetrations: Maintain indicated fire rating of walls, partitions, ceilings, and floors at cable penetrations. Install sleeves and seal with firestop materials according to Division07 Section "Penetration Firestopping."
- Y. T-ratings on floor penetrations: Apply means and methods acceptable to OSHPD in maintaining T-ratings of floors penetrated.
- Z. Roof-Penetration Sleeves: Seal penetration of individual cables with flexible boot-type flashing units applied in coordination with roofing work.
- AA. Aboveground Exterior-Wall Penetrations: Seal penetrations using sleeves and mechanical sleeve seals. Size sleeves to allow for 1-inch annular clear space between pipe and sleeve for installing mechanical sleeve seals.
- BB. Underground Exterior-Wall Penetrations: Install cast-iron "wall pipes" for sleeves. Size sleeves to allow for 1-inch annular clear space between cable and sleeve for installing mechanical sleeve seals.

3.3 SLEEVE-SEAL INSTALLATION

- A. Install to seal exterior wall penetrations.
- B. Use type and number of sealing elements recommended by manufacturer for raceway or cable material and size. Position raceway or cable in center of sleeve. Assemble mechanical sleeve seals and install in annular space between raceway or cable and sleeve. Tighten bolts against pressure plates that cause sealing elements to expand and make watertight seal

3.4 FIRESTOPPING

A. Apply firestopping to penetrations of fire-rated floor and wall assemblies for electrical installations to restore original fire-resistance rating of assembly. Firestopping materials and installation requirements are specified in Division07 Section "Penetration Firestopping."

- B. Provide materials, sizes, and types of anchors, fasteners and supports to carry the loads of equipment and conduit. Consider weight of wire in conduit when selecting products. For empty conduits, include weight of 4 type XHHW wires of maximum permissible size.
- C. Do not fasten supports to pipes, ducts, mechanical equipment, and conduit.
- D. Do not use spring steel clips and clamps.
- E. Obtain permission from Structural Engineer before drilling or cutting structural members.
- F. Fabricate supports from structural steel or steel channel. Rigidly weld members or use hexagon head bolts to present neat appearance with adequate strength and rigidity. Use spring lock washers under all nuts.

3.5 ELECTRICAL DEMOLITION

- A. De-energize, disconnect, demolish, and remove electrical systems, equipment, raceways, wiring, and components indicated to be removed.
 - 1. Conduit to Be Removed: Remove portion of piping indicated or specified to be removed. In general, all empty raceways and associated supporting devices shall be removed back to nearest active junction box, panelboard, switchboard, panel cabinet, or other similar enclosure.
 - Conductors to be Removed: Unless specifically stated elsewhere, all un-terminated conductors shall be de-energized, and all de-energized conductors shall be removed. Un-terminated conductors shall not be provided with wire nut covers nor provided with electrical tape covering exposed ends.
 - 3. Equipment to Be Removed: De-energize, disconnect associated raceways and wiring, and remove equipment.
 - 4. Equipment to Be Removed and Reinstalled: De-energize, disconnect associated raceways and wiring, and remove equipment. Clean equipment and store where appropriate, reinstall, reconnect, and make equipment operational. Test equipment and associated components in accordance with the appropriate specification section.
 - 5. Equipment to Be Removed and Salvaged: De-energize, disconnect associated raceways and wiring, and move equipment to on site storage area as designated by the Owner.
 - 6. Any unused conduit openings in junction boxes, panelboards, switchboards, panel cabinets, pull boxes, or other similar enclosures shall be covered in a code approved manner.
 - 7. Update any electrical circuit directories or breaker identification nameplates to reflect changes in the status of overcurrent devices resulting from demolition.
 - Unless specifically noted otherwise, any equipment removed from service as part of project demolition becomes the property of the contractor who shall be responsible for its disposal.
 - 9. Contractor shall check the ballasts of light fixtures removed from service. If any ballasts contain PCB's those ballasts shall be stored on site in containers and in a

manner approved by local authorities and the Environmental Protection Agency. The contractor shall turn over to owner for disposal of ballasts that contain PCB's.

- B. If equipment to remain is damaged in appearance or is unserviceable, remove damaged or unserviceable portions and replace with new products of equal capacity and quality.
- C. Notify Architect of location and extent of existing piping, conduit, or equipment that interferes with new construction. In coordination with and with approval of Architect, relocate conduit and equipment to permit new work to be provided as required by Contract Documents. Remove non-functioning and abandoned conduit and equipment as directed by Architect. Dispose of or store items as requested by Architect.
- 3.6 COMMON REQUIREMENTS FOR ELECTRICAL INSTALLATION
 - A. Comply with NECA1–Standard Practices for Good Workmanship in Electrical Contracting.
 - B. Measure indicated mounting heights to bottom of unit for suspended items and to center of unit for wall-mounting items.
 - C. Headroom Maintenance: If mounting heights or other location criteria are not indicated, arrange and install components and equipment to provide maximum possible headroom consistent with these requirements.
 - D. Equipment: Install to facilitate service, maintenance, and repair or replacement of components of both electrical equipment and other nearby installations. Connect in such a way as to facilitate future disconnecting with minimum interference with other items in the vicinity.
 - E. Right of Way: Give to piping systems installed at a required slope.
 - F. Apply firestopping to penetrations of fire-rated floor and wall assemblies for electrical installations to restore original fire-resistance rating of assembly. Firestopping materials and installation requirements are specified in Division07 Section "Penetration Firestopping."

3.7 FIREPROOFING:

- A. Clips, hangers, clamps, supports and other attachments to surfaces to be fireproofed shall be installed, insofar as possible, prior to start of spray fiber work.
- B. Piping and other items which would interfere with proper application of fireproofing shall be installed after completion of spray fiber work.
- C. Patching and repairing of fireproofing due to cutting or damaging to fireproofing during course of work specified under this Section shall be performed by installer of fireproofing and paid for by trade responsible for damage and shall not constitute grounds for extra cost to Owner.
- 3.8 INSTALLATION ONLY ITEMS:

- A. Where this contractor is required to install items which he does not purchase, he shall coordinate their delivery and be responsible for their unloading from delivery vehicles and for their safe handling and field storage up to the time of installation. This contractor shall be responsible for:
 - 1. Any necessary field assembly and internal connections, as well as mounting in place of the items, including the purchase and installation of
 - all dunnage supporting members and fastenings necessary to adapt them to architectural and structural conditions.
 - 2. Their connection to building systems including the purchase and installation of all terminating fittings necessary to adapt and connect them to the building systems.
- B. This Contractor shall carefully examine such items upon delivery. Claims that any of these items have been received in such condition that their installation will require procedures beyond the reasonable scope of work of this Contractor will be considered only if presented in writing within one week of their date of delivery. Unless such claims have been submitted, this Contractor shall be fully responsible for the complete reconditioning or replacement of the damaged items.

3.9 PAINTING

A. Furnish one can of aerosol-free touch-up paint for each different color factory finish which is to be the final finished surface of the product.

3.10 RECORD DOCUMENTS

- A. Record Drawings are specified in Division01 Section "Project Record Documents."
- B. The Contractor shall keep a detailed up-to-date record, of the manner and location in which installations are actually made, indexing each feeder, pull box and protective device. Upon completion of the project, the contractor shall modify the project electronic drawing and specification files to

incorporate this information. Modified documents shall be turned over to the Owner in both electronic and hard paper copy formats. Record drawings shall also include:

- 1. Locations of buried conduit or similar items. Include buried depth.
- 2. Field changes of dimension or detail.
- 3. Changes made by field order or change order.
- 4. Details not on original contract drawings.
- 5. Changes to circuit numbers.
- 6. Junction box locations and conduit runs, with trade sizes indicated, for lighting, power, and electrical systems installed.
- 7. Final panel schedules on drawings matching construction document drawing size.

3.11 CLEANING

A. Cleaning shall be performed prior to equipment being energized .

B. Raceways

1. General:

- a. Cover all raceway openings prior to the installation of conductors to prevent dirt, moisture, and other debris from entering the raceways.
- b. Before pulling conductors, swab out all raceways to remove any debris that may have entered raceways during construction or during storage.
- c. When external surfaces of raceways or enclosures are rusted, clean and restore surfaces to original condition.
- 2. Equipment
 - a. After completion of work but prior to turning equipment over to the Owner, clean the exterior surfaces to be free from concrete residue, dirt, paint residue, etc.
 - b. All dirt, drywall dust, and all other foreign matter shall be blown from, wiped away, or vacuumed from transformer coils, terminal devices, panelboard interiors, switchboard interiors, junction boxes, pullboxes, and other similar equipment enclosures.
 - c. Thoroughly clean equipment of all stains, paint spots, dirt, and dust. Remove all temporary labels not used for instruction or operation and remove all visible trade labels.
- 3.12 COMMISSIONING
 - A. The Commissioning Authority will be Owner furnished and under direct contract with the Owner. That is, the General Contractor and this subcontractor's bid price shall not include the services of the Commissioning Authority but shall include costs for coordination testing, Contractor commissioning, etc.

END OF SECTION

SECTION 26 05 19- LOW-VOLTAGE ELECTRICAL POWER CONDUCTORS AND CABLES

PART 1 GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. This Section includes the following:
 - 1. Building wires and cables rated 600V and less.
 - 2. Connectors, splices, and terminations rated 600V and less.
- B. Related Sections include the following:
 - Division26 Section "Medium-Voltage Cables" for single-conductor and multi conductor cables, cable splices, and terminations for electrical distribution systems with 2001 to 35,000V.
 - 2. Division 26 Section "Common Work Results for Electrical".
 - 3. Division 26 Section "Raceway and Boxes for Electrical Systems".
- 1.3 DEFINITIONS A.EPDM: Ethylene-propylene-dieneter polymer rubber. B.NBR: Acrylonitrile-butadiene rubber.
- 1.4 ACTION SUBMITTALS A. Product Data: For each type of product indicated.

1.5 INFORMATIONAL SUBMITTALS

- A. Field quality-control test reports.
 - 1. Torque measurements.
 - 2. Insulation resistance tests.

1.6 QUALITY ASSURANCE

- A. Electrical Components, Devices, and Accessories: Listed and labeled as defined in CEC, California Electrical Code, by a testing agency acceptable to authorities having jurisdiction, and marked for intended use.
- B. Comply with CEC, California Electrical Code.
- 1.7 PROJECT CONDITIONS
 - A. Wire and cable routing where shown on Drawings is approximate unless dimensioned. Route wire and cable as required to meet Project Conditions.
 - B. Where wire and cable routing is not shown, and destination only is indicated, determine exact routing and lengths required.

PART 2 PRODUCTS

2.1 CONDUCTORS AND CABLES

- A. Available Manufacturers: Subject to compliance with requirements, manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 - 1. American Insulated Wire Corp.; a Leviton Company.
 - 2. General Cable Corporation.
 - 3. Senator Wire & Cable Company.
 - 4. Southwire Company.
 - 5. Okonite.
- B. Copper Conductors: Comply with NEMAWC70.Aluminum not permitted.
- C. Conductor Insulation: Comply with NEMAWC70 for TypesTHHNTHWN,XHHW2andSO.
- D. Multi conductor Cable: Comply with NEMAWC70 for Type SO with ground wire.

2.2 METAL CLAD CABLE

- A. CEC Type MC, UL-listed for hospital use.
- B. Conductor: Solid copper.
- C. Jacket: Steel or Aluminum
- D. Minimum Conductor Size: 12 AWG for lighting and power circuits; #16 for fire alarm. Grounding conductor shall be same size as current carrying conductors contained in the cable assembly.
- E. Insulation: CEC, Type THHN.
- F. Armor: Interlocked, spiral-wound sheet tape.
- G. Cable terminators:1.Malleable iron or aluminum with red plastic, internal, anti-short bushings
- 2.3 CONNECTORS AND SPLICES

- A. Available Manufacturers: Subject to compliance with requirements, manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 - 1. AFC Cable Systems, Inc.
 - 2. Hubbell Power Systems, Inc.
 - 3. O-Z/Gedney; EGS Electrical Group LLC.
 - 4. 3M; Electrical Products Division.
 - 5. Tyco Electronics Corp.
 - 6. Thomas & Betts.
- B. Description: Factory-fabricated connectors and splices of size, ampacity rating, material, type, and class for application and service indicated.
- C. Spring wire connectors: Corrosion-resistant, live-action spring in insulated shell, rated 105°C.
- D. Connectors and lugs: Circumferential compression (non-indenter) type.

PART 3 EXECUTION

- 3.1 CONDUCTOR MATERIAL APPLICATIONS
 - A. Feeders:
 - 1. Conductor: Copper. Solid for No.10AWG and smaller; stranded for No.8AWG and larger.
 - Insulation: CEC: Type XHHW-2 insulation for feeders and branch circuits larger than #2 AWG; Type THHN/THWN insulation for feeders and branch circuits #2 AWG and smaller.
 - B. Branch Circuits:
 - 1. Conductor: Copper. Solid for No.10AWG and smaller; stranded for No.8AWG and larger.
 - Insulation: CEC: Type XHHW-2 insulation for feeders and branch circuits larger than #2 AWG; Type THHN/THWN insulation for feeders and branch circuits #2 AWG and smaller.
 - C. Motors and equipment connections subject to vibration: Copper. No. 12 AWG and larger, stranded conductor, single conductor.
- 3.2 CONDUCTOR INSULATION AND MULTICONDUCTOR CABLE APPLICATIONS AND WIRING METHODS
 - A. Service Entrance: Single conductors in raceway.
 - B. Exposed Feeders: Single conductors in raceway.
 - C. Feeders Concealed in Ceilings, Walls, Partitions, and Crawlspaces: Single conductors in raceway.
 - D. Feeders Concealed in Concrete, below Slabs-on-Grade, and Underground: Single

conductors in raceway.

- F. Exposed Branch Circuits, Including in Crawlspaces: Single conductors in raceway.
- G. Branch Circuits Concealed in Ceilings, Walls, and Partitions: Single conductors in raceway. Provide individual, dedicated single conductor for neutral conductor of each branch circuit.
- H. Branch Circuits Concealed in Concrete, below Slabs-on-Grade, and Underground: Single conductors in raceway. Provide individual, dedicated single conductor for neutral conductor of each branch circuit.
- J. Class1 Control Circuits: Single conductors in raceway.
- K. Class2 Control Circuits: Single conductors in raceway.

3.3 INSTALLATION OF METAL CLAD CABLE

- A. Install products in accordance with manufacturer's instructions.
- B. Use MC cable only for fixture whips.
- C. Clean conductor surfaces before installing connectors.
- D. Make splices, taps and terminations to carry full ampacity of conductors with no perceptible temperature rise.
- E. Do not use metal clad cable above non-accessible ceilings, in exterior locations, or where exposed to view except in electrical rooms.
- F. Support metal clad cables above accessible ceilings using clips or cable ties. Do not rest cables on ceiling panels.
- G. Do not support metal clad cables from cable tray, from mechanical ducts or equipment, or from ceiling support wires.

3.4 VOLTAGE DROP REQUIREMENTS

A. Feeders:

- 1. Upsize feeders where length will result in voltage drop that exceeds 2%.
- B. Branch circuits:
 - Do not use wire smaller than No. 12 AWG (unless otherwise noted) for branch circuit wiring, including motor circuits. All 20 amp, 120 volt and 277 volt branch circuit homeruns (to panelboard) serving receptacles, equipment, and lighting shall be No. 10AWG minimum to first outlet, light fixture or junction box.
 - Size 120V branch circuits for length of run on the following basis:
 a.0 to 100 ft. run from panelboard to first outlet: No. 12AWG minimum.
 - b. 101 to 150 ft. run: increase one wire size, i.e.; No. 12 AWG becomes No. 10AWG to first outlet.

- c. 151 to 250ft. run: wiring shall be No. 8AWG minimum size to first outlet.
- d. For other branch circuits, size conductors so that voltage drop does not exceed 3%.

3.5 CONNECTIONS

- A. Tighten electrical connectors and terminals according to manufacturer's published torque-tightening values. If manufacturer's torque values are not indicated, use those specified in UL486A and UL486B.
- B. Make splices and taps that are compatible with conductor material and that possess equivalent or better mechanical strength and insulation ratings than unspliced conductors.
- C. Wiring at Outlets: Install conductor at each outlet, with at least 6 inches of slack.
- D. Clean conductor surfaces before installing lugs and connectors.
- E. Make splices, taps, and terminations to carry full ampacity of conductors with no perceptible temperature rise.
- F. Use compression connectors for conductor splices and taps, 6 AWG and larger. Use compression tool designed for the size and type of connector being compressed. Tape uninsulated conductors and connector with electrical tape to 150% of insulation rating of conductor.
- G. Use insulated spring wire connectors with plastic caps for copper conductor splices and taps, 8 AWG and smaller.

3.6 FIRESTOPPING

A. Apply firestopping to electrical penetrations of fire-rated floor and wall assemblies to restore original fire-resistance rating of assembly according to Division07 Section "Penetration Firestopping."

3.7 FIELD QUALITY CONTROL

- A. Perform tests and inspections and prepare test reports.
- B. Tests and Inspections:
 - 1. After installing conductors and cables and before electrical circuitry has been energized, test feeder conductors, and conductors feeding all critical equipment and services in all critical care areas, as defined by CEC for compliance with requirements.
 - 2. Perform each visual and mechanical inspection and electrical test stated in NETA Acceptance Testing Specification. Certify compliance with test parameters.
- C. Test Reports: Prepare a written report to record the following:
 - 1. Test procedures and instruments used.
 - 2. Test results that comply with requirements.
 - 3. Test results that do not comply with requirements and corrective action taken to achieve compliance with requirements.

D. Remove and replace malfunctioning units and retest as specified above.

END OF SECTION

SECTION 26 05 26- GROUNDING AND BONDING FOR ELECTRICAL SYSTEMS

PART 1 GENERAL

- 1.1 RELATED DOCUMENTS
 - A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. This Section includes methods and materials for grounding systems and equipment.
- 1.3 ACTION SUBMITTALS A. Product Data: For each type of product indicated.
- 1.4 INFORMATIONAL SUBMITTALS
 - A. Plans showing dimensioned as-built locations of grounding features specified in Part3 "Field Quality Control" Article, including the following:
 - 1. Test wells.
 - 2. Ground rods.
 - 3. Ground rings.
 - 4. Grounding arrangements and connections for separately derived systems.
 - 5. Grounding for sensitive electronic equipment.
 - B. Field quality-control test reports:
 - 1. Test procedures and instruments used.
 - 2. Test results that comply with requirements.
 - 3. Results of failed tests and corrective action taken to achieve test results that comply with requirements.

1.5 QUALITY ASSURANCE

A. Electrical Components, Devices, and Accessories: Listed and labeled as defined in CEC, Article100, by a testing agency acceptable to authorities having jurisdiction, and marked for intended use. B. Comply with UL467 for grounding and bonding materials and equipment.

PART 2 PRODUCTS

- 2.1 MANUFACTURERS
 - A. Manufacturers: Subject to compliance with requirements; provide products by one of the following:
 - 1. Erico, Inc.
 - 2. Boggs, Inc.
 - 3. Chance/Hubbell
 - 4. Copperweld Corp.
 - 5. Ideal Industries
 - 6. Ilsco
 - 7. Cooper Power Sytems
 - 8. Lyncale XIT
 - 9. O-Z Gedney
 - 10. Raco Inc.
 - 11. Thomas and Betts

2.2 CONDUCTORS

- A. Insulated Conductors: Copper or tinned-copperwire or cable insulated for 600V unless otherwise required by applicable Code or authorities having jurisdiction.
- B. Bare Copper Conductors:
 - 1. Solid Conductors: ASTMB3.
 - 2. Stranded Conductors: ASTMB8.
 - 3. Tinned Conductors: ASTMB33.
- C. Grounding Bus: Rectangular bars of annealed copper, size as shown on drawings; with insulators.

2.3 CONNECTORS

A. UL listed and labeled for applications in which used, and for specific types, sizes, and combinations of conductors and other items connected.

- B. Bolted Connectors for Conductors and Pipes: Copper or copper alloy, bolted pressure-type, with at least two bolts.
 - 1. Pipe Connectors: Clamp type, sized for pipe.
- C. Welded Connectors: Exothermic-welding kits of types recommended by kit manufacturer for materials being joined and installation conditions.
- 2.4 GROUNDING ELECTRODES
 - A. Ground Rods: Copper-clad steel, sectional type; 3/4 inch by10 feet in diameter.

2.5 GROUNDING WELL

- A. Well Pipe: 8-inch diameter by 24-inch long pipe with belled end.
- B. Well Cover: Cast iron with legend "GROUND" embossed on cover.

PART 3 EXECUTION

3.1 APPLICATIONS

- A. Conductors: Install solid conductor for No.8 AWG and smaller, and stranded conductors for No.6AWG and larger, unless otherwise indicated.
- B. Underground Grounding Conductors: Install bare copper conductor, No.3/0AWG minimum.
 - 1. Bury at least 30inchesbelow grade.
- C. Isolated Grounding Conductors: Green-colored insulation with continuous yellow stripe. On feeders with isolated ground, identify grounding conductor where visible to normal inspection, with alternating bands of green and yellow tape, with at least three bands of green and two bands of yellow.
- D. Grounding Bus: Install in electrical and telephone equipment rooms, in rooms housing service equipment, and elsewhere as indicated.
 - 1. Install bus bar on insulated spacers 1 inch, minimum, from wall 18inchesabove finished floor, unless otherwise indicated.
- E. Conductor Terminations and Connections:
 - 1. Pipe and Equipment Grounding Conductor Terminations: Bolted connectors.
 - 2. Underground Connections: Welded connectors, except at test wells and as otherwise indicated.

- 3. Connections to Ground Rods at Test Wells: Bolted connectors.
- 4. Connections to Structural Steel: Bond plate with connectors.
- 3.2 GROUNDING UNDERGROUND DISTRIBUTION SYSTEM COMPONENTSA. Comply with IEEEC2 grounding requirements.
 - B. Grounding Manholes and Handholes: Install a driven ground rod through manhole or handhole floor, close to wall, and set rod depth so 4 inches will extend above finished floor. If necessary, install ground rod before manhole is placed and provide No.1/0AWG bare, tinned-copper conductor from ground rod into manhole through a waterproof sleeve in manhole wall. Protect ground rods passing through concrete floor with a double wrapping of pressure-sensitive insulating tape or heat-shrunk insulating sleeve from 2 inches above to 6 inches below concrete. Seal floor opening with waterproof, non-shrink grout.
 - C. Grounding Connections to Manhole Components: Bond exposed-metal parts such as inserts, cable racks, pulling irons, ladders, and cable shields within each manhole or handhole, to ground rod or grounding conductor. Make connections with No.4AWG minimum, stranded, hard-drawn copper bonding conductor. Train conductors level or plumb around corners and fasten to manhole walls. Connect to cable armor and cable shields as recommended by manufacturer of splicing and termination kits.
 - D. Generators: Install ground rods and ground ring around the pad as indicated on the drawings.

3.3 EQUIPMENT GROUNDING

- A. Install insulated equipment grounding conductors with all feeders and branch circuits. Terminate each end on suitable lug, bus or bushing.
- B. The equipment grounding terminal bars of the normal and emergency electrical system panelboards that serve the same patient area shall be bonded together with an insulated continuous copper conductor not smaller than no. 10.
- C. Panelboards serving "critical care" areas shall be grounded in accordance with C.E.C. Article 517. Metal feeder raceways shall have grounding bushing and a continuous copper bonding jumper sized in accordance with C.E.C. Table 250-122.
- D. Provide grounding and bonding in patient care areas to meet requirements of NFPA 99 and Regulatory Requirements.

- E. Bond fuel storage tanks and associated metallic piping systems to building ground system.
- F. Bond bulk oxygen storage tank and associated metallic piping system to building ground system.
- G. Air-Duct Equipment Circuits: Install insulated equipment grounding conductor to duct-mounted electrical devices operating at 120V and more, including air cleaners, heaters, dampers, humidifiers, and other duct electrical equipment. Bond conductor to each unit and to air duct and connected metallic piping.
- H. Isolated Grounding Receptacle Circuits: Install an insulated equipment grounding conductor connected to the receptacle grounding terminal. Isolate conductor from raceway and from panelboard grounding terminals. Terminate at equipment grounding conductor terminal of the applicable derived system or service, unless otherwise indicated.
- I. Isolated Equipment Enclosure Circuits: For designated equipment supplied by a branch circuit or feeder, isolate equipment enclosure from supply circuit raceway with a nonmetallic raceway fitting listed for the purpose. Install fitting where raceway enters enclosure, and install a separate insulated equipment grounding conductor. Isolate conductor from raceway and from panelboard grounding terminals. Terminate at equipment grounding conductor terminal of the applicable derived system or service, unless otherwise indicated.
- J. Signal and Communication Equipment: For telephone, alarm, voice and data, and other communication equipment, provide No.4AWG minimum insulated grounding conductor in raceway from grounding electrode system to each service location, terminal cabinet, wiring closet, and central equipment location.
 - 1. Service and Central Equipment Locations and Wiring Closets: Terminate grounding conductor on a grounding bus. Refer to drawings for size of grounding bus.
 - 2. Terminal Cabinets: Terminate grounding conductor on cabinet grounding terminal.

3.4 INSTALLATION

- A. Install Products in accordance with manufacturer's instructions and NECA 1 and NECA 331.
- B. Grounding Conductors: Route along shortest and straightest paths possible, unless otherwise indicated or required by Code. Avoid obstructing access or placing conductors where they may be subjected to strain, impact, or damage.

- C. Ground Rods: Drive rods until tops are 2 inches below finished floor or final grade, unless otherwise indicated.
 - Interconnect ground rods with grounding electrode conductor below grade and as otherwise indicated. Make connections without exposing steel or damaging coating, if any.
- D. Test Wells: Ground rod driven through drilled hole in bottom of handhole. Handholes are specified in Division26 Section "Underground Ducts and Raceways for Electrical Systems," and shall be at least 12 inches deep, with cover.
 - 1. Install at least one test well for each service, unless otherwise indicated. Install at the ground rod electrically closest to service entrance. Set top of test well flush with finished grade or floor.
 - 2. Provide precast concrete handholes factory engraved with marking "ground", with bolt-down traffic covers.
- E. Bonding Straps and Jumpers: Install in locations accessible for inspection and maintenance, except where routed through short lengths of conduit.
 - 1. Bonding to Structure: Bond straps directly to basic structure, taking care not to penetrate any adjacent parts. Bond together metal siding not attached to grounded structure; bond to ground.
 - 2. Bonding to Equipment Mounted on Vibration Isolation Hangers and Supports: Install so vibration is not transmitted to rigidly mounted equipment.
 - 3. Use exothermic-welded connectors for outdoor locations, but if a disconnect-type connection is required, use a bolted clamp.
- F. Grounding and Bonding:
 - Metal Water Service Pipe: Install insulated copper grounding conductors, in conduit, from building's main service equipment, or grounding bus, to main metal water service entrances to building. Connect grounding conductors to main metal water service pipes, using a bolted clamp connector or by bolting a lug-type connector to a pipe flange, using one of the lug bolts of the flange. Where a dielectric main water fitting is installed, connect grounding conductor on street side of fitting. Bond metal grounding conductor conduit or sleeve to conductor at each end.
 - 2. Water Meter Piping: Where metallic underground water piping is available, use braided-type bonding jumpers to electrically bypass water meters. Connect to pipe with a bolted connector.
 - 3. Bond each aboveground portion of gas piping system downstream from equipment shutoff valve.

3.5 CONNECTIONS

- A. General: Make connections so galvanic action or electrolysis possibility is minimized. Select connectors, connection hardware, conductors, and connection methods so metals in direct contact will be galvanically compatible.
 - 1. Use electroplated or hot-tin-coated materials to ensure high conductivity and to make contact points closer to order of galvanic series.
 - 2. Make connections with clean, bare metal at points of contact.
 - 3. Make aluminum-to-steel connections with stainless-steel separators and mechanical clamps.
 - 4. Coat and seal connections having dissimilar metals with inert material to prevent future penetration of moisture to contact surfaces.
- B. Exothermic-Welded Connections: Comply with manufacturer's written instructions. Welds that are puffed up or that show convex surfaces indicating improper cleaning are not acceptable.
- C. Equipment Grounding Conductor Terminations: For No.8AWG and larger, use pressure-type grounding lugs. No.10AWG and smaller grounding conductors may be terminated with winged pressure-type connectors.
- D. Noncontact Metal Raceway Terminations: If metallic raceways terminate at metal housings without mechanical and electrical connection to housing, terminate each conduit with a grounding bushing. Connect grounding bushings with a bare grounding conductor to grounding bus or terminal in housing. Bond electrically non-continuous conduits at entrances and exits with grounding bushings and bare grounding conductors, unless otherwise indicated.
- E. Connections at Test Wells: Use compression-type connectors on conductors and make bolted-and clamped-type connections between conductors and ground rods.
- F. Tighten screws and bolts for grounding and bonding connectors and terminals according to manufacturer's published torque-tightening values. If manufacturer's torque values are not indicated, use those specified in UL486A.
- G. Compression-Type Connections: Use hydraulic compression tools to provide correct circumferential pressure for compression connectors. Use tools and dies recommended by connector manufacturer. Provide embossing die code or other standard method to make a visible indication that a connector has been adequately compressed on grounding conductor.
- H. Moisture Protection: If insulated grounding conductors are connected to ground rods or grounding buses, insulate entire area of connection and seal against moisture penetration of insulation and cable.

3.6 FIELD QUALITY CONTROL

- A. Perform the following tests and inspections and prepare test reports:
 - 1. After installing grounding system but before permanent electrical circuits have been energized, test for compliance with requirements.
 - 2. Test completed grounding system at each location where a maximum ground-resistance level is specified, at service disconnect enclosure grounding terminal, at ground test wells, and at individual ground rods. Make tests at ground rods before any conductors are connected.
 - a. Measure ground resistance not less than two full days after last trace of precipitation and without soil being moistened by any means other than natural drainage or seepage and without chemical treatment or other artificial means of reducing natural ground resistance.
 - b. Perform tests by fall-of-potential method according to IEEE81.
 - 3. Prepare dimensioned drawings locating each test well, ground rod and ground rod assembly, and other grounding electrodes. Identify each by letter in alphabetical order, and key to the record of tests and observations. Include the number of rods driven and their depth at each location, and include observations of weather and other phenomena that may affect test results. Describe measures taken to improve test results.
- B. Report measured ground resistances that exceed the following values:
 - 1. Power and Lighting Equipment or System with Capacity 500kVA and Less: 10ohms.
 - 2. Power and Lighting Equipment or System with Capacity 500 to 1000kVA: 50hms.
 - 3. Power and Lighting Equipment or System with Capacity More Than 1000kVA: 3ohms.
 - 4. Substations: 5ohms.
 - 5. Manhole Grounds: 10ohms.
- C. Excessive Ground Resistance: If resistance to ground exceeds specified values, notify Architect promptly and include recommendations to reduce ground resistance.
- D. Provide a grounding system test in accordance with NFPA-99 for all patient care areas. Include test results in close-out documents. A Hampden Ground Integrity Tester Model MVO-1-PB or equivalent shall be used for grounding system test.

END OF SECTION

SECTION 26 05 33- RACEWAY AND BOXES FOR ELECTRICAL SYSTEMS

PART 1 GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. This Section includes raceways, fittings, boxes, enclosures, and cabinets for electrical wiring.
- B. Related Sections include the following:
 - 1. Division 7 Section "Through-Penetration Fire Stop Systems" for fire stopping materials and installation at penetration through walls, ceilings and other fire-rated elements.
 - 2. Division 7 Section "Sheet Metal Flushing and Trim".
 - 3. Division 26 Section "Common Work Results for Electrical" for conduit sleeves and seals.
 - 4. Division26 Section "Underground Ducts and Raceways for Electrical Systems" for exterior duct banks, manholes, and underground utility construction.
 - 5. Division 26 Section "Identification for Electrical Systems" for identification products.
 - 6. Division 26 Section "Vibration and Seismic Controls for Electrical Systems" for seismic restraints and bracing of raceways, boxes, enclosures and cabinets.
 - 7. Division 26 Section "Wiring Devices" for wiring device boxes orientation.

1.3 DEFINITIONS

- A. EMT: Electrical metallic tubing.
- B. ENT: Electrical nonmetallic tubing.
- C. EPDM: Ethylene-propylene-dieneter polymer rubber.
- D. FMC: Flexible metal conduit.

- E. IMC: Intermediate metal conduit.
- F. LFMC: Liquidtight flexible metal conduit.
- G. LFNC: Liquidtight flexible nonmetallic conduit.
- H. NBR: Acrylonitrile-butadiene rubber.
- I. RNC: Rigid nonmetallic conduit.

1.4 ACTION SUBMITTALS

- A. Product Data: For surface raceways, wireways and fittings, floor boxes, hinged-cover enclosures, and cabinets.
- B. Shop Drawings: For the following raceway components. Include plans, elevations, sections, details, and attachments to other work.
 - 1. Custom enclosures and cabinets.
 - 2. Enclosures and boxes used to maintain floor T-ratings with penetrations.

1.5 INFORMATIONAL SUBMITTALS

- A. Coordination Drawings: Conduit routing plans, drawn to scale, on which the following items are shown and coordinated with each other, based on input from installers of the items involved:
 - 1. Structural members in the paths of conduit groups with common supports.
 - 2. HVAC and plumbing items and architectural features in the paths of conduit groups with common supports.
- B. Manufacturer Seismic Qualification Certification: Submit certification that enclosures and cabinets and their mounting provisions, including those for internal components, will withstand seismic forces defined in Division26 Section "Vibration and Seismic Controls for Electrical Systems." Include the following:
 - 1. Basis for Certification: Indicate whether withstand certification is based on actual test of assembled components or on calculation.
 - a. The term "withstand" means "the cabinet or enclosure will remain in place without separation of any parts when subjected to the seismic forces specified and the unit will retain its enclosure characteristics, including its interior accessibility, after the seismic event."
 - 2. Dimensioned Outline Drawings of Equipment Unit: Identify center of gravity and locate and describe mounting and anchorage provisions.
 - 3. Detailed description of equipment anchorage devices on which the certification is based and their installation requirements.

- C. Certification: Installer qualifications.
- 1.6 QUALITY ASSURANCE
 - A. Electrical Components, Devices, and Accessories: Listed and labeled as defined in California Electrical Code -CEC, by a testing agency acceptable to authorities having jurisdiction, and marked for intended use.
 - B. Comply with CEC.

PART 2 PRODUCTS

- 2.1 METAL CONDUIT AND TUBING
 - A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - 1. AFC Cable Systems, Inc.
 - 2. Alflex Inc.
 - 3. Allied Tube & Conduit; a Tyco International Ltd. Co.
 - 4. Anamet Electrical, Inc.; Anaconda Metal Hose.
 - 5. Electri-Flex Co.
 - 6. Manhattan/CDT/Cole-Flex.
 - 7. Maverick Tube Corporation.
 - 8. O-Z Gedney; a unit of General Signal.
 - 9. Wheatland Tube Company.
 - B. Rigid Steel Conduit: ANSIC80.1.
 - C. IMC: ANSIC80.6.
 - D. PVC-Coated Steel Conduit: PVC-coated rigid steel conduit.
 - 1. Comply with NEMARN1.
 - 2. Coating Thickness: 0.040 inch, minimum.
 - E. EMT: ANSIC80.3.
 - F. FMC: Zinc-coated steel or aluminum.
 - G. LFMC: Flexible steel conduit with PVC jacket.
 - 1. Description: Interlocked steel construction with PVC jacket.
 - 2. Fittings: ANSI/NEMA FB1.

- H. Fittings for Conduit (Including all Types and Flexible and Liquidtight), EMT, and Cable: NEMAFB1; listed for type and size raceway with which used, and for application and environment in which installed.
 - 1. Conduit Fittings for Hazardous (Classified) Locations: Comply with UL886.
 - 2. Fittings for EMT: Steel Insulated Throat, set-screw or compression type.
 - 3. Coating for Fittings for PVC-Coated Conduit: Minimum thickness, 0.040 inch, with overlapping sleeves protecting threaded joints.
- I. Joint Compound for Rigid Steel Conduit or IMC: Listed for use in cable connector assemblies, and compounded for use to lubricate and protect threaded raceway joints from corrosion and enhance their conductivity.
- J. Minimum size: 3/4", unless otherwise specified.

2.2 NONMETALLIC CONDUIT

- A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - 1. AFC Cable Systems, Inc.
 - 2. Anamet Electrical, Inc.; Anaconda Metal Hose.
 - 3. Arnco Corporation.
 - 4. CANTEX Inc.
 - 5. CertainTeed Corp.; Pipe & Plastics Group.
 - 6. Condux International, Inc.
 - 7. ElecSYS, Inc.
 - 8. Electri-Flex Co.
 - 9. Lamson & Sessions; Carlon Electrical Products.
 - 10. Manhattan/CDT/Cole-Flex.
 - 11. RACO; a Hubbell Company.
 - 12. Thomas & Betts Corporation.
- B. RNC: NEMATC2, TypeEPC-40-PVC, unless otherwise indicated.
- C. Fittings for RNC: NEMATC3; match to conduit or tubing type and material.

2.3 METAL WIREWAYS

- A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - 1. Cooper B-Line, Inc.
 - 2. Hoffman.
 - 3. SquareD; Schneider Electric.
 - 4. Approved equal.

- B. Description: Sheet metal sized and shaped as indicated, NEMA250, Type1,12,or 3R, unless otherwise indicated.
- C. Fittings and Accessories: Include couplings, offsets, elbows, expansion joints, adapters, hold-down straps, end caps, and other fittings to match and mate with wireways as required for complete system.
- D. Wireway Covers: Hinged type.
- E. Finish: Manufacturer's standard enamel finish.
- 2.4 BOXES, ENCLOSURES, AND CABINETS
 - A. Manufacturers: Subject to compliance with requirements, provide products as manufactured by, but not limited to the following:
 - 1. Cooper Crouse-Hinds; Div. of Cooper Industries, Inc.
 - 2. Hoffman.
 - 3. Hubbell Incorporated; Killark Electric Manufacturing Co. Division.
 - 4. RACO; a Hubbell Company.
 - 5. Robroy Industries, Inc.; Enclosure Division.
 - B. Sheet Metal Outlet and Device Boxes: NEMAOS1, galvanized steel.
 - 1. Sheet Metal Outlet Boxes: NEMA OS 1, galvanized steel.
 - a. Luminaire and Equipment Supporting Boxes: Minimum 4" square by 1½" deep, rated for weight of equipment supported; include ½" male fixture studs where required.
 - b. Concrete Ceiling Boxes: 4" octagon.
 - 2. Cast Boxes: NEMA FB 1, Type FD. Provide gasketed cover by box manufacturer. Provide threaded hubs.
 - 3. Wall Plates for Finished Areas: As specified in Section 26 27 26.
 - C. Cast-Metal Outlet and Device Boxes: NEMAFB1, ferrous alloy, Type FD, with gasketed cover provide threaded hubs.
 - 1. Surface Mounted Cast Metal Box: NEMA 250,Type 4, flat-flanged, surface mounted junction box:
 - a. Material: Cast Aluminum.
 - b. Cover: Furnish with ground flange, neoprene gasket, and stainless steel cover screws.
 - D. Small Sheet Metal Pull and Junction Boxes: NEMAOS1, galvanized steel, minimum 4" square by 4 1/2" deep.
 - E. Hinged-Cover Enclosures: NEMA250, Type1, with continuous-hinge cover with flush latch, unless otherwise indicated.
 - 1. Metal Enclosures: Steel, finished inside and out with manufacturer's standard enamel.
 - F. Cabinets:
 - 1. NEMA250, Type1, galvanized-steel box with removable interior panel and removable front, finished inside and out with manufacturer's standard enamel.

- 2. Hinged door in front cover with flush latch and concealed hinge.
- 3. Key latch to match panelboards.
- 4. Metal barriers to separate wiring of different systems and voltage.
- 5. Accessory feet where required for freestanding equipment.

2.5 DUCT SEALING COMPOUND

- A. Manufacturers as listed below or an approved equal:
 - 1. Blackburn.
 - 2. Ilsco.
 - 3. O-Z/Gedney.
- B. Description: Pliable, non-hardening, paintable, service temperature to --40°F.

PART 3 EXECUTION

3.1 RACEWAY APPLICATION

- A. Outdoors: Apply raceway products as specified below, unless otherwise indicated:
 - 1. Exposed Conduit: Rigid steel conduit, IMC.
 - 2. Concealed Conduit, Aboveground: Rigid steel conduit, IMC, EMT, RNC, TypeEPC-40-PVC.
 - 3. Underground Conduit: RNC, TypeEPC-40; for emergency systems EPC 80-PVC, or 40encased in concrete.
 - a. Connection to Vibrating Equipment (Including Transformers and Hydraulic, Pneumatic, Electric Solenoid, or Motor-Driven Equipment): LFMC
 - Outside Building Foundation: Use Schedule 40 PVC in concrete encasement; use PVC-coated rigid steel conduit and Schedule 40 PVC for direct burial.
 - c. Under Slab on Grade: Use Schedule 40 PVC and PVC-coated rigid steel conduit.
 - 4. Boxes and Enclosures, Aboveground: NEMA250, Type3R.
- B. Comply with the following indoor applications, unless otherwise indicated:
 - 1. Exposed, Not Subject to Physical Damage: EMT.
 - 2. Exposed, Not Subject to Severe Physical Damage: EMT.
 - 3. Exposed and Subject to Severe Physical Damage: Rigid steel conduit or IMC. Includes raceways in the following locations:
 - a. Loading dock.
 - b. Corridors used for traffic of mechanized carts, forklifts, and pallet-handling units.
 - c. Mechanical rooms.
 - 4. Concealed in Ceilings and Interior Walls and Partitions:
 - a. Furred, elevated underfloor, ceiling spaces and stud and masonry walls: Use electrical metallic tubing.
 - b. Concrete Walls: Use electrical metallic tubing in patient care areas, Schedule 40 PVC in non-patient care areas.

- c. Connections to Lighting Fixtures in Accessible Ceilings: Use flexible conduit or MC Cable for fixture whips only.
- Connection to Vibrating Equipment (Including Transformers and Hydraulic, Pneumatic, Electric Solenoid, or Motor-Driven Equipment): FMC, except use LFMC in damp or wet locations.
- 6. Damp or Wet Locations: Rigid steel conduit or IMC.
 - a. Exposed Wet Locations: Use rigid steel between finish grade and 8' above finish grade. Use EMT above 8'.
 - b. Exposed Dry and Damp Locations;
 - Use rigid steel and intermediate metal conduit below switch height and electrical metallic tubing above switch height, except that electrical metallic tubing may be used below switch height in designated equipment rooms and closets, utility chases and similar locations.
- 7. Raceways for Optical Fiber or Communications Cable in Spaces Used for Environmental Air: EMT.
- 8. Raceways for Optical Fiber or Communications Cable Risers in Vertical Shafts: EMT.
- 9. Raceways for Concealed General Purpose Distribution of Optical Fiber or Communications Cable: EMT.
- 10. Boxes and Enclosures: NEMA250, Type1, except use NEMA250, Type3R in damp or wet locations.
- C. Minimum Raceway Size:
 - 1. Minimum conduit size shall be 1/2-inch except for conduit homeruns to panelboards, minimum size shall be 3/4 inch.
- D. Raceway Fittings: Compatible with raceways and suitable for use and location.
 - 1. Rigid and Intermediate Steel Conduit: Use threaded rigid steel conduit fittings, unless otherwise indicated.
 - 2. PVC Externally Coated, Rigid Steel Conduits: Use only fittings listed for use with that material. Patch and seal all joints, nicks, and scrapes in PVC coating after installing conduits and fittings. Use sealant recommended by fitting manufacturer.
- E. Verify routing and termination locations of conduit prior to rough in.
- F. Conduit routing is shown on drawings in approximate locations unless dimensioned. Route as required to complete wiring system.

3.2 PRE-INSTALLATION MEETING

- A. Convene pre-installation meeting prior to installation of boxes and raceway components in casework and in walls shown to accept case work or headwalls.
- B. Attendees:
 - 1. Contractor.
 - 2. Electrical Subcontractor.

- 3. Plumbing Subcontractor.
- 4. Casework Installer.
- 5. Architect.
- 6. Owner (Owner's Representative).
- C. Notify Architect seven days prior to meeting.
- D. Prepare agenda and preside at meeting.
 - 1. Review locations and mounting heights of devices and outlets shown. Compare to casework shop drawings.
 - 2. Review routing of raceways through chases and cabinets.
 - 3. Verify connection components of electrified components of casework.
- E. Document final locations, connection points and mounting heights where at variance with plans. Distribute documentation to affected Subcontractors and to Architect.

3.3 INSTALLATION

- A. Comply with NECA1 for installation requirements applicable to products specified in Part2 except where requirements on Drawings or in this Article are stricter.
- B. Keep raceways at least 6 inches away from parallel runs of flues and steam or hot-water pipes. Install horizontal raceway runs above water and steam piping.
- C. Complete raceway installation before starting conductor installation. Combine up to maximum of (4) four individual circuits in a homerun. Do not combine smoke fire damper circuits with other circuits.
- D. Support raceways as specified in Division26 Section "Hangers and Supports for Electrical Systems."
- E. Arrange stub-ups so curved portions of bends are not visible above the finished slab.
- F. Install no more than the equivalent offour90-degree bends between boxes in any conduit run for feeders and four 90-degree bends for branch circuits, except for communications conduits, with no more than two 90-degree bends.
- G. Conceal conduit and EMT within finished walls, ceilings, and floors, unless otherwise indicated.
- H. Do not terminate more than 4conduitsin a single junction or outlet box unless indicated.
- RNC conduit shall not be used in interior spaces. Conduit shall not be run below or within floor slabs for branch circuits within interior spaces, unless otherwise noted on drawings for certain spaces. Where RNC conduit is run below floor slabs for feeder conduits and conduit is stubbed above slab, EMT or galvanized rigid steel conduit shall be provided for conduit above floor slab. RNC conduit for feeders of emergency system shall be Schedule 80, or 40 encased in concrete. Where it is impossible to run conduit for branch circuits overhead to equipment and receptacles, conduit shall be run below slabs on grade or run within concrete slab, if not on grade, and conduit shall be galvanized rigid steel and shall be PVC coated the entire length.
- J. In Slab On or Above Grade:
 - 1. Use galvanized rigid steel conduit.
 - 2. Maximize Size Conduit in Slab: 3/4" in 4" slabs; 1/2" in 21/2" slabs.
- K. RNC conduit shall be used when conduit is run in earth exterior to the building. RNC conduit for emergency systems shall be Schedule 40 with concrete encasement.
- L. Raceways Embedded in Slabs:
 - 1. Run conduit larger than 1-inchtrade size, parallel or at right angles to main reinforcement. Where at right angles to reinforcement, place conduit close to slab support.
 - 2. Arrange raceways to cross building expansion joints at right angles with expansion fittings.
 - 3. Change from PVC to EMT, IMC, or rigid steel conduit, or IMC before rising above the floor.
- M. Where RNC conduit is installed, all 90 degree bends for conduit 1-1/2" and larger shall be made with a PVC coated rigid steel conduit elbow.
- N. Threaded Conduit Joints, Exposed to Wet, Damp, Corrosive, or Outdoor Conditions: Apply listed compound to threads of raceway and fittings before making up joints. Follow compound manufacturer's written instructions.
- O. Use PVC coated rigid metal conduit where conduit is exposed in areas designated as "water treatment" or "wet", including but not limited to: Life Support Systems areas; ozone rooms, chemical rooms; salt water environments; other water treatment zones; tank areas; and outdoors.
- P. Install pull wires in empty raceways. Use polypropylene or monofilament plastic line with not less than 200-lbtensile strength. Leave at least 12 inches of slack at each end of pull wire.
- Q. Raceways for Optical Fiber and Communications Cable: Install raceways, metallic and nonmetallic, rigid and flexible, as follows:
 - 1. 3/4-InchTrade Size and Smaller: Install raceways in maximum lengths of 50 feet.
 - 2. 1-InchTrade Size and Larger: Install raceways in maximum lengths of75 feet.
 - 3. Install with a maximum of two 90-degree bends or equivalent for each length of raceway unless Drawings show stricter requirements. Separate lengths with pull or junction boxes or terminations at distribution frames or cabinets where necessary to comply with these requirements.
- R. Install raceway sealing fittings at suitable, approved, and accessible locations and fill them with listed sealing compound. For concealed raceways, install each fitting in a flush steel box with a blank cover plate having a finish similar
- W. Use conduit hubs to fasten conduit to cast boxes. to that of adjacent plates or surfaces. Install raceway sealing fittings at the following points:
 - 1. Where conduits pass from warm to cold locations, such as boundaries of refrigerated spaces.

- 2. Where otherwise required by CEC.
- S. Flexible Conduit Connections: Use maximum of 72 inches of flexible conduit for recessed and semi-recessed lighting fixtures, maximum of 36 inches of flexible conduit equipment subject to vibration, noise transmission, or movement; and for transformers and motors.
 - 1. Use LFMC in damp or wet locations and for connection to liquid-handling equipment.
 - 2. Use FMS in dry locations.
- T. Conduit Supports:
 - 1. Arrange supports to prevent misalignment during wiring installation.
 - 2. Support conduit using coated steel or malleable iron straps, lay-in adjustable hangers, clevis hangers and split hangers.
 - 3. Group related conduits; support using conduit track. Construct rack using steel channel; provide space on each for 25% additional conduits.
 - 4. Fasten conduit supports to building structure and surfaces under provisions of Section 26 05 00.
 - 5. Do not support conduit with wire or perforated pipe straps. Remove wire used for temporary supports.
 - 6. Do not attach conduit to ceiling support wires.
- U. Conduit Routing:

1. Arrange conduit to maintain headroom and present neat appearance.2. Route exposed conduit parallel and perpendicular to walls.

- 3. Route conduits in accessible ceilings to clear access openings.
- 4. Route conduit in and under slab from point to point.
- 5. Do not cross conduits in slab.
- 6. Maintain adequate clearance between conduit and piping.
- 7. Maintain 12" clearance between conduit and surfaces with temperatures exceeding 104°F.
- V. Cut conduit square using saw or pipe cutter; de-burr cut ends.
- X. Use conduit bodies to make sharp changes in direction, as around beams.
- Y. Provide suitable fittings to accommodate expansion and deflection where conduit crosses seismic, control and expansion joints.
- Z. Use suitable caps to protect installed conduit against entrance of dirt and moisture.
- AA. Ground and bond conduit under provisions of Division 26 Section "Grounding and Bonding for Electrical Systems".
- BB. Identify conduit under provisions of Division 26 Section "Identification for Electrical Systems".
- CC. Provide insulated equipment ground conductor in flexible conduit.

- DD. Termination of Conduit Stubs:
 - 1. Underground and Flush with Finish Floor: Use coupling and threaded plug.
 - 2. Above Floor: Use conduit bushing.
 - 3. Signal Systems: Use conduit bushing.
- EE. Make conduit penetrations of exterior concrete or masonry walls below grade, and of floor slabs on fill below grade, watertight.
- FF. Provide chromium-plated escutcheons on each exposed conduit-penetrating floor, wall or ceiling in finished spaces.
- GG. Set metal floor boxes level and flush with finished floor surface.
- HH. Set wall mounted boxes at elevations to accommodate mounting heights indicated.
- II. Maintain headroom and present neat mechanical appearance.
- JJ. Install pull boxes and junction boxes above ceilings and in unfinished areas only.
- KK. Use flush mounting outlet box in finishes areas.
- LL. Secure flush mounting box to interior wall and partition studs. Accurately position to allow for surface finish thickness.
- MM. Install flush mounting box without damaging wall insulation or reducing its effectiveness.
- NN. Use adjustable steel channel fasteners for hung ceiling outlet box.
- OO. Do not fasten boxes to ceiling support wires.
- PP. Support boxes independently of conduit.
- QQ. Use cast floor boxes for installations in slab on grade, formed steel boxes are acceptable for other installations.
- RR. Use masonry boxes with square corners in tile, marble, brick or concrete block.
- SS. Plaster Rings: Use for all concealed work except for masonry boxes; depth of rings as required to reach finished surfaces.
- 3.4 OUTLET BOX LOCATIONS

- A. Locate flush mounted wall boxes in corner of nearest brick or block to keep cutting to a minimum.
- B. Location of outlets and equipment as shown on drawings is approximate, and exact location shall be verified and shall be determined by:
 - 1. Construction or code requirements.
 - 2. Conflict with equipment of other trades.
 - 3. Equipment manufacturer's drawings.
- C. Orient boxes to accommodate wiring devices oriented as specified in Division 26 Section "Wiring Devices".
- D. Inaccessible Ceiling Areas: Install outlet and junction boxes no more than 6" from ceiling access panel or from removable recessed luminaire.
- E. Conflict with millwork, tack boards, etc. Contractor shall review architectural elevations and millwork drawings before roughing-in boxes and conduit. Any conflicts shall be noted and addressed by an RFI. Adjusting box locations due to such conflicts shall be at no additional compensation. Coordinate mounting heights and location of outlets mounted above counters, benches and backsplashes.
- F. Minor modification in the location of outlets and equipment is considered incidental up to a distance of 10 feet with no additional compensation, providing necessary instructions are given prior to roughing in of outlet.
- G. Metallic electrical outlet boxes may be installed in vertical fire resistive assemblies classified as fire/smoke and smoke partitions without affecting the fire classification, provided such openings do not exceed 16 square inches and theyare located per applicable U.L. assembly. All clearances between such outlet boxes and the gypsum board must be completely filled with joint compound or other approved materials. The wall must be built around outlets

of a larger size so as to not interfere with the integrity of the wall rating. The aggregate surface area of the boxes shall not exceed 100 square inches per 100 square feet. Boxes located on opposite sides of walls or partitions shall be separated by a horizontal distance of 24 inches. The metallic outlet or switch boxes shall be securely fastened to the studs and the opening in the wallboard facing shall be cut so that the clearance between the box and the wallboard does not exceed 1/8 inch.

- H. In general, do not install boxes back to back or through wall. Offset outlet boxes on opposite sides of wall a minimum of 6inches or on opposite sides of stud in partition walls. Where back to back boxes cannot be avoided, provide gypsum board between boxes.
- I. Where more than two switches or devices are located at one point use ganged boxes and covers, unless devices do not allow for ganging. Contractor to verify suitability of devices for gang mounting. Provide permanently installed barrier (U.L. Listed) between adjacent switches where required per CECArticle 404.8 or Article 700.9.
- J. Align adjacent wall mounted outlet boxes for switches, thermostats and similar devices.
- K. Install emergency switches which occur adjacent to normal light switches in separate boxes to maintain system's isolation in accordance with CECrequired separation

L. Exposed outlet and junction boxes

- 1. Cast boxes up to 4'-0" above floor for exposed conduit runs.
- 2. Pressed steel boxes acceptable above 4'-0".

3.5 FIRESTOPPING

A. Apply firestopping to electrical penetrations of fire-rated floor and wall assemblies to restore original fire-resistance rating of assembly. Firestopping materials and installation requirements are specified in Division07 Section "Penetration Firestopping."

3.6 PROTECTION

- A. Provide final protection and maintain conditions that ensure coatings, finishes, and cabinets are without damage or deterioration at time of Substantial Completion.
 - 1. Repair damage to galvanized finishes with zinc-rich paint recommended by manufacturer.
 - 2. Repair damage to PVC or paint finishes with matching touchup coating recommended by manufacturer.

3.7 CLEANING

- A. Section 01 70 00 -Execution Requirements: Cleaning installed work.
- B. Clean interior of boxes to remove duct, debris and other material.
- C. Clean exposed surfaces and restore finish.

END OF SECTION

THIS PAGE INTENTIONALLY LEFT BLANK

SECTION 26 05 48-VIBRATION AND SEISMIC CONTROLS FOR ELECTRICAL SYSTEMS

PART 1 -GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. This Section includes the following:
 - 1. Isolation pads.

1.3 DEFINITIONS

- A. The IBC: International Building Code.
- B. ICC-ES: ICC-Evaluation Service.
- C. OSHPD: Office of Statewide Health Planning and Development for the State of California.
- 1.4 PERFORMANCE REQUIREMENTS
 - A. Distribution Components: Select support, attachment, and restraint details complying with requirements of CBC and ASCE 7-05 for distribution components from one of the following OSHPD Pre-Approvals:
 - 1. Vibration-Control and Seismic-Restraint Device Schedule.
 - 2. Cooper B-Line (OPA-0114).
 - 3. SMACNA (OPA-0010).
 - 4. Mason Industries (OPA-0349).
 - 5. ISAT (OPA-0485).

B. Use seismic design values shown on structural drawings.

C. Design of conduit seismic restraint and bracing to existing structure to be provided by a qualified professional engineer in the State of California. Licensed professional engineer to provide signed and sealed shop drawing submittal including: a) design criteria, b) typical and non-typical connection types, c) location, type, magnitude and direction of loads imposed on the building structural frame from this bracing, for SOER review.

1.5 ACTION SUBMITTALS

- A. Product Data.
 - 1. Include rated load, rated deflection, and overload capacity for each vibration isolation device.
 - 2. Annotate to indicate application of product and compliance with requirements.

1.6 INFORMATIONAL SUBMITTALS

- A. Coordination Drawings: Show proposed locations of supports and restraints for distribution system components.
 - 1. Include details selected from OSHPD Pre-Approvals, and reference proposed locations to specific details selected.
 - 2. Show coordination of seismic bracing for electrical components with other systems and equipment in the vicinity, including other supports and seismic restraints

PART 2 PRODUCTS

2.1 VIBRATION ISOLATORS

- A. Available Manufacturers: Subject to compliance with requirements, manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
- B. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
- C. Basis-of-Design Product: Subject to compliance with requirements, provide Mason Industries "W" or a comparable product by one of the following:
 - 1. Ace Mountings Co., Inc.
 - 2. California Dynamics Corporation.
 - 3. Isolation Technology, Inc.
 - 4. Mason Industries.
 - 5. Vibration Eliminator Co., Inc.
- D. Pads : Arrange in single or multiple layers of sufficient stiffness for uniform loading over pad area, molded with a nonslip pattern and galvanized-steel

baseplates, and factory cut to sizes that match requirements of supported equipment.

1. Resilient Material: Oil-and water-resistant neoprene.

2.2 SEISMIC-RESTRAINT DEVICES

- A. Available Manufacturers: Subject to compliance with requirements, manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
- B. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
- C. Basis-of-Design Product: Subject to compliance with requirements, provide products of Mason Industries or a comparable product by one of the following:
 - 1. Cooper B-Line, Inc.; a division of Cooper Industries.
 - 2. Hilti Inc.
 - 3. Loos & Co.; Seismic Earthquake Division.
 - 4. Mason Industries.
 - 5. ISAT.
 - 6. Unistrut; Tyco International, Ltd.

2.3 FACTORY FINISHES

- A. Finish: Manufacturer's standard prime-coat finish ready for field painting.
- B. Finish: Manufacturer's standard paint applied to factory-assembled and -tested equipment before shipping.
 - 1. All hardware shall be galvanized. Hot-dip galvanize metal components for exterior use.

PART 3 EXECUTION

3.1 EXAMINATION

- A. Examine areas and equipment to receive vibration isolation and seismic-control devices for compliance with requirements for installation tolerances and other conditions affecting performance.
- B. Examine roughing-in of reinforcement and cast-in-place anchors to verify actual locations before installation.
- C. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 APPLICATIONS

A. Multiple Raceways or Cables: Secure raceways and cables to trapeze member with

clamps according to OSHPD Pre-Approval details.

- 3.3 SEISMIC-RESTRAINT DEVICE INSTALLATION
 - A. Anchor and restrain equipment according to details on structural drawings.
 - B. Anchor and restrain distribution components according to OSHPD Pre-Approval details.
- 3.4 ACCOMMODATION OF DIFFERENTIAL SEISMIC MOTION
 - A. Install flexible connections in runs of raceways, cables, wireways, cable trays, and busways where they cross seismic joints, where adjacent sections or branches are supported by different structural elements, and where they terminate with connection to equipment that is anchored to a different structural element from the one supporting them as they approach equipment.

3.5 FIELD QUALITY CONTROL

A. Tests and Inspections: Test and inspect to meet Regulatory Requirements.

END OF SECTION

SECTION 26 05 53-IDENTIFICATION FOR ELECTRICAL SYSTEMS

PART 1 GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. This Section includes the following:
 - Identification for raceway boxes and metal-clad cable.
 Identification for conductors and communication and control cable.3.Underground-line warning tape.
 - 4.Warning labels and signs.
 - 5.Instruction signs.
 - 6.Equipment identification labels.
 - 7. Miscellaneous identification products.

1.3 QUALITY ASSURANCE

- A. Comply with ANSIA13.1 and ANSIC2.
- B. Comply with CEC, California Electrical Code.
- C. Comply with 29CFR1910.145.

1.4 COORDINATION

- A. Coordinate identification names, abbreviations, colors, and other features with requirements in the Contract Documents, Shop Drawings, manufacturer's wiring diagrams, and the Operation and Maintenance Manual, and with those required by codes, standards, and 29CFR1910.145. Use consistent designations throughout Project.
- B. Coordinate installation of identifying devices with completion of covering and painting of surfaces where devices are to be applied.

- C. Coordinate installation of identifying devices with location of access panels and doors.
- D. Install identifying devices before installing acoustical ceilings and similar concealment.

PART 2 PRODUCTS

2.1 RACEWAY AND BOXES

- A. Comply with ANSIA13.1 for minimum size of letters for legend and for minimum length of color field for each raceway and cable size.
- B. Color for Printed Legend:
 - 1. Power Circuits: Black letters on a clear field.
 - 2. Legend: Indicate system or service and voltage, if applicable.
- C. Self-Adhesive Vinyl Labels: Preprinted, flexible label laminated with a clear, weather-and chemical-resistant coating and matching wraparound adhesive tape for securing ends of legend label.
- D. Conduit Markers
 - 1. Self-Adhesive Vinyl Tape: Colored, heavy duty, waterproof, fade resistant; 2 inches wide; compounded for outdoor use.
 - 2. Location: Furnish markers for each length of conduit.
 - 3. Color:
 - a. 480 Volt System: Yellow.
 - b. 208 Volt System: Blue.
 - c. Fire Alarm System: Red.
 - d. Voice/Data Systems: White.
 - e. Control Systems: Brown.
 - f. Nurse Call System: Purple.
 - g. Grounding System: Green.

2.2 CONDUCTOR AND CONTROL-CABLE IDENTIFICATION MATERIALS

A. Color-Coding Conductor Tape: Colored, self-adhesive vinyl tape not less than 3 mils thick by 1 to 2 inches wide.

- B. Marker Tapes: Vinyl or vinyl-cloth, self-adhesive wraparound type, with circuit identification legend machine printed by thermal transfer or equivalent process.
- 2.3 UNDERGROUND-LINE WARNING TAPE
 - A. Description: Permanent, bright-colored, continuous-printed, polyethylene tape.
 - 1. Not less than 6 inches wide by 4 milsthick.
 - 2. Compounded for permanent direct-burial service.
 - 3. Embedded continuous metallic strip or core.
 - 4. Printed legend shall indicate type of underground line.
- 2.4 WARNING LABELS AND SIGNS
 - A. Comply with CEC and 29CFR1910.145.
 - B. Engraved, Laminated Acrylic or Melamine Label: Punched or drilled for screw mounting. White letters on a dark-gray background. Minimum letter height shall be 3/8 inch.
 - C. Warning label and sign shall include, but are not limited to, the following legends:
 - 1. Multiple Power Source Warning: "DANGER -ELECTRICAL SHOCK HAZARD -EQUIPMENT HAS MULTIPLE POWER SOURCES."
- 2.5 INSTRUCTION SIGNS
 - A. Engraved, laminated acrylic or melamine plastic, minimum 1/16 inch thick for signs up to 20 sq. in. and 1/8 inch thick for larger sizes.
 - 1. Engraved legend with black letters on white face.
 - 2. Punched or drilled for mechanical fasteners.
 - 3. Framed with mitered acrylic molding and arranged for attachment at applicable equipment.
- 2.6 EQUIPMENT IDENTIFICATION LABELS
 - A. Engraved, Laminated Acrylic or Melamine Label: Punched or drilled for screw mounting. White letters on a dark-gray background. Minimum letter height shall be 3/8 inch.

2.7 WIRING DEVICES

- A. Wiring device coverplates shall be hot-stamped to indicate circuit number (i.e., "NBHA-10"). Lettering shall be recessed black for normal power and red for emergency. Plates for devices connected to emergency power shall also indicate "emergency".
- B. Receptacle label shall include panel designation and circuit number.
- C. For receptacles other than 20A, 120V, labels shall include receptacle voltage, phase and amperage at top of receptacle and panel designation and circuit numbers at bottom of receptacles.
- D. For locations where 3 or more switches are provided side by side hot-stamp coverplates to indicate which fixtures are controlled by each switch.
- E. Adhesive labels and nameplates are not acceptable.

2.8 MISCELLANEOUS IDENTIFICATION PRODUCTS

- A. Cable Ties: Fungus-inert, self-extinguishing, 1-piece, self-locking, Type6/6 nylon cable ties.
 - 1. Minimum Width:3/16 inch.
 - 2. Tensile Strength:50 lb, minimum.
 - 3. Temperature Range: Minus 40 to plus 185 deg F.
 - 4. Color: Black, except where used for color-coding.
- B. Fasteners for Labels and Signs: Self-tapping, stainless steel screws or stainless-steel machine screws with nuts and flat and lock washers.

2.9 MISCELLANEOUS IDENTIFICATION PRODUCTS

- A. Paint: Paint materials and application requirements are specified in Division09 painting Sections.
- B. Fasteners for Labels and Signs: Self-tapping stainless steel screws, except contact type permanent commercial grade adhesive providing a permanent bond shall be used where screws cannot or should not penetrate substrate.
- C. Two-sided tape and dynamo type adhesives are not acceptable.

PART 3 EXECUTION

3.1 APPLICATION

- A. Accessible Raceways and Metal-Clad Cables, 600 V or Less, for Service, Feeder, and Branch Circuits: Identify with paint as noted below.
 - 1. All junction boxes for the Emergency System and Fire Alarm System shall be painted as follows:
 - a. Emergency System-Yellow
 - b. Fire Alarm System-Red
 - All junction boxes and conduit fittings above ceilings and exposed for the Emergency System, Fire Alarm System, Nurse Call Systems, Telecommunication/Data Systems, Doctor's Dictation System, Physiological Monitoring System, CCTV System, CATV System and Access Control System shall be painted as follows(do not allow paint inside conduit fittings):
 - a. Emergency System Life Safety Branch -Yellow
 - b. Emergency System Critical Branch -Orange
 - c. Equipment System -Green
 - d. Fire Alarm System -Red
 - e. Nurse Call Systems -Blue
 - f. Telecommunication/Data/Doctor's Dictation/Physiological Monitoring Systems -White
 - g. CCTV System Brown
 - h. CATV System –Black
 - i. Access Control System -Purple
 - 3. If existing color coding is different than indicated above, match existing color coding.
- B. Power-Circuit Conductor Identification: For primary and secondary conductors in vaults, pull and junction boxes, manholes, and handholes use color-coding conductor tape. Identify source and circuit number of each set of conductors. For single conductor cables, identify phase in addition to the above.
- C. Branch-Circuit Conductor Identification: Where there are conductors for more than three branch circuits in same junction or pull box, use marker tape. Identify each ungrounded conductor according to source and circuit number.
- D. At each junction box, the covers on junction boxes and pull boxes in areas that are not to be painted shall be marked with "Indelible Markers" to indicate the circuit number(s) of conductors in the box. In areas where exposed conduit

and junction boxes are to be painted, indicate circuit number(s) of conductors in the box on the inside cover of the box.

- E. Conductors to Be Extended in the Future: Attach marker tape to conductors and list source and circuit number.
- F. Locations of Underground Lines: Identify with underground-line warning tape for power,

lighting, communication, and control wiring and communications cable. Install underground-line warning tape for both direct-buried cables and cables in raceway.

- G. Warning Labels for Indoor Cabinets, Boxes, and Enclosures for Power and Lighting: Comply with 29CFR1910.145 and apply baked-enamel warning signs. Identify system voltage with black letters on an orange background. Apply to exterior of door, cover, or other access.
 - 1. Equipment with Multiple Power or Control Sources: Apply to door or cover of equipment including, but not limited to, the following:
 - a. Power transfer switches.
 - b. Controls with external control power connections.
 - 2. Equipment Requiring Workspace Clearance According to NFPA70: Unless otherwise indicated, apply to door or cover of equipment but not on flush panelboards and similar equipment in finished spaces.
- H. Instruction Signs:
 - 1. Operating Instructions: Install instruction signs to facilitate proper operation and maintenance of electrical systems and items to which they connect. Install instruction signs with approved legend where instructions are needed for system or equipment operation.
 - 2. Emergency Operating Instructions: Install instruction signs with white legend on a red background with minimum 3/8-inch-high letters for emergency instructions at equipment used for power transfer load shedding.
- Equipment Identification Labels: On each unit of equipment, install unique designation label that is consistent with wiring diagrams, schedules, and Operation and Maintenance Manual. Apply labels to disconnect switches and protection equipment, central or master units, control panels, control stations, terminal cabinets, and racks of each system. Systems include power, lighting, control, communication, signal, monitoring, and alarm systems unless equipment is provided with its own identification.
 - 1. Labeling Instructions:
 - a. Indoor Equipment: Engraved, laminated acrylic or melamine label. Unless otherwise indicated, provide a single line of text with 1/2-inch-high letters on 1-1/2-inch-high label; where 2 lines of text are required, use labels 2 inches high.
 - b. Outdoor Equipment: Engraved, laminated acrylic or melamine label.
 - c. Elevated Components: Increase sizes of labels and letters to those appropriate for viewing from the floor.
 - 2. Equipment to Be Labeled:
 - b. Access doors and panels for concealed electrical items.
 - c. Electrical switchgear and switchboards.
 - f. Emergency system boxes and enclosures.
 - g. Motor-control centers.
 - h. Disconnect switches.
 - i. Enclosed circuit breakers.

- j. Motor starters.
- I. Automatic transfer switches.
- p. Contactors.
- J. Engraved laminate signs shall have white lettering in a black field.
- K. Engraved laminate signs for equipment identification shall have white lettering in a colored field as indicated below for the following systems:
 - 1. Emergency System Life Safety Branch -Yellow
 - 2. Emergency System Critical Branch Orange
 - 3. Emergency System Equipment Branch Green
 - 6. Normal Power -Black
 - 7. If existing color coding is different than indicated above, match existing color coding.
- L. Equipment connected to the Essential Electrical System (panels, transfer switches, disconnects, etc.) shall be labeled as per branch, i.e.: "PANEL XXX-LIFE SAFETY BRANCH"; "PANEL XXX-CRITICAL BRANCH"; "PANEL XXX EQUIPMENT BRANCH". Voltage shall also be indicated.
- M. Panelboard identification shall indicate panelboard designation, voltage and where fed from, i.e., "PANEL 1LA-120/208V, 3 PHASE, 4W". FED FROM MDPA"
- N. Panelboards located in storage rooms shall have floor space per CEC-110 permanently marked and shall be identified as "Electrical Access -Not For Storage."

3.2 ENGRAVED COVER PLATES

- A. All cover plates for control stations controlling remote equipment shall be engraved to identify the device being controlled.
- B. Engraved cover plates shall be supplied and installed on all switches serving lobbies, corridors, and other public locations and shall indicate load controlled.
- C. Provide factory engraved cover plates for all receptacles indicating panelboard designation and circuit number. Receptacles served from "normal" source shall have black lettering and receptacles served from "emergency" source shall have white lettering.
- D. Letter height for engraved coverplates shall be 1/4 inch.

3.3 COVER PLATES

- A. All wiring device cover plates shall have panel name and circuit number serving device clearly marked on the back of each faceplate with indelible marker.
- 3.4 PANELBOARD CIRCUIT DIRECTORIES
 - A. Install in each panelboard a typewritten directory accurately indicating rooms and equipment

being served. Verify actual room names and numbers to be used. Also, provide a copy of typewritten panelboard directories in Owner's close-out manuals.

B. Where new circuits are added to existing panelboards or existing circuits deleted, provide new typewritten panelboard circuit directory with added circuits identified and deleted circuits indicated as 'spare'. Circuit identification shall indicate room and equipment being served. In the case of exterior lighting poles, circuit identification shall indicate pole numbers.

3.5 ENCLOSED MOTOR CONTROLLERS

A. Provide neatly typed label inside each motor controller door identifying motor served, nameplate horsepower, full load amperes, code letter, service factor and voltage/phase rating.

3.6 INSTALLATION

- A. Verify identity of each item before installing identification products.
- B. Location: Install identification materials and devices at locations for most convenient viewing without interference with operation and maintenance of equipment.
- C. Apply identification devices to surfaces that require finish after completing finish work.
- D. Self-Adhesive Identification Products: Clean surfaces before application, using materials and methods recommended by manufacturer of identification device.
- E. Attach nonadhesive signs and plastic labels with screws and auxiliary hardware appropriate to the location and substrate.
- F. System Identification Color Banding for Raceways and Cables: Each color band shall completely encircle cable or conduit. Place adjacent bands of two-color markings in contact, side by side. Locate bands at changes in direction, at penetrations of walls and floors, at 50-foot maximum intervals in straight runs, and at 25-foot maximum intervals in congested areas.
- G. Color-Coding for Phase and Voltage Level Identification, 600V and Less: Use the colors listed below for ungrounded service, feeder, and branch-circuit conductors.
 - 1. Color shall be factory applied or, for sizes larger than No.10AWG if authorities having jurisdiction permit, field applied.
 - 2. Colors for 208/120-V Circuits:

a.	Phase A:	Black.
b.	Phase B:	Red.
C.	Phase C:	Blue.
d.	Neutral :	White
e.	Ground :	Green

- f. Isolated Ground: Green/Yellow Tracer
- 3. Colors for 480/277-V Circuits:

a.	Phase A:	Brown.
----	----------	--------

b.	Phase B:	Orange.

c. Phase C: Yellow.

- d. Neutral : Gray
- e. Ground : Green
- f. Isolated Ground: Green/Yellow Tracer
- 4. If existing building conductor color coding is different than that indicated above, conductor color coding shall match existing.
- 5. Field-Applied, Color-Coding Conductor Tape: Apply in half-lapped turns for a minimum distance of 6 inches from terminal points and in boxes where splices or taps are made. Apply last two turns of tape with no tension to prevent possible unwinding. Locate bands to avoid obscuring factory cable markings.
- H. Underground-Line Warning Tape: During backfilling of trenches install continuous underground-line warning tape directly above line at 6 to 8 inches below finished grade. Use multiple tapes where width of multiple lines installed in a common trench or concrete envelope exceeds 16 inches overall.
- I. Painted Identification: Prepare surface and apply paint according to Division09 painting Sections.

END OF SECTION

THIS PAGE INTENTIONALLY LEFT BLANK

SECTION 26 05 83-ACCEPTANCE TESTING FOR ELECTRICAL SYSTEMS

PART 1 GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. This Section includes acceptance testing performed by a qualified firm in addition to site tests specified in individual specification sections.

1.3 INFORMATIONAL SUBMITTALS

- A. Test Reports: NETA ATS. Include description of equipment tested, test procedure, and test equipment, including calibration date.
- B. Technician certification.
- C. Testing firm qualifications.

1.4 QUALIFICATIONS

- A. Testing Firm: Regularly engaged in the testing of electrical equipment, devices, installations and systems; full member of International Electrical Testing Association.
- B. Technician: Certified by the International Electrical Testing Association or the National Institute for Certification in Engineering Technologies in electrical power distribution system testing.

PART 2 PRODUCTS

Not Used

PART 3 EXECUTION

- 3.1 SITE TESTS
 - A. Perform thermo graphic survey in accordance with NETA ATS when load is applied to the system Include:
 - 1. Transfer switches.
 - 2. Switchboards.
 - 3. Distribution panelboards.
 - 4. Panelboards.
 - 5. Medium voltage switchgear.
 - 6. Unit substations.
 - B. Inspect and test in accordance with NETA ATS:
 - 1. Switchgear and switchboard assemblies.
 - 2. Dry-type transformers with windings rated over 600 volts.
 - 3. 600 volt cables. Include optional tests.
 - 4. Molded case circuit breakers in switchboards and distribution panels.
 - 5. Unit substations: Test and inspect each section according to requirements for respective sections listed above.
 - C. Provide test equipment necessary to carry out tests specified.
 - D. Test Instrument Calibration.
 - 1. Calibration Frequency.
 - a. Field Instruments: Analog, six months maximum; digital, 12 months maximum.
 - b. Leased Specialty Equipment: 12 months where accuracy is guaranteed by lessor.
 - c. Dated Calibration Labels: Visible on test equipment.
 - d. Calibrating standard shall be of higher accuracy than that of the instrument tested.
 - E. Adjust or replace equipment found to be defective. Repeat tests.
 - F. Coordinate with owner to schedule thermo graphic study approximately six months after full occupancy of building.

END OF SECTION

SECTION 26 27 26-WIRING DEVICES

PART 1 GENERAL

- 1.1 RELATED DOCUMENTS
 - A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. This Section includes the following:
 - 1. Receptacles, receptacles with integral GFCI, and associated device plates.
 - 2. Hospital-grade receptacles.
 - 3. Snap switches and wall-box dimmers.

1.3 DEFINITIONS

A. GFCI: Ground-fault circuit interrupter.

1.4 SUBMITTALS

- A. Product Data: For each type of product indicated.
- B. Field quality-control test reports.
- C. Operation and Maintenance Data: For wiring devices to include in all manufacturers' packing label warnings and instruction manuals that include labeling conditions.

1.5 QUALITY ASSURANCE

A. Source Limitations: Obtain each type of wiring device and associated wall plate through one source from a single manufacturer. Insofar as they are available, obtain all wiring devices and associated wall plates from a single manufacturer and one source.

- B. Electrical Components, Devices, and Accessories: Listed and labeled as defined in CEC, California Electrical Code, by a testing agency acceptable to authorities having jurisdiction, and marked for intended use.
- C. Comply with CEC, California Electrical Code.

PART 2 PRODUCTS

2.1 MANUFACTURERS

A. Manufacturers' Names:
1.Hubbell
2.Leviton
3.Pass and Seymour
4.Arrow Hart
5.Bryant

2.2 DEVICE COLORS

- A. Color: Wiring device catalog numbers in Section Text do not designate device color.
 - 1. Wiring Devices Connected to Normal Power System: White, unless otherwise indicated or required by CEC or device listing.
 - 2. Wiring Devices Connected to Emergency Power System: Red.
- B. Devices circuited from emergency power panels shall be red in color.

2.3 GENERAL

- A. Provide factory-fabricated wiring devices in type, color, and electrical rating for service indicated.
- B. See Symbol Schedule on drawings for identification of device type.
- C. Terminal screws shall be back and side wired and accept #14, 12, and #10 AWG stranded or solid wire.
- D. A full wrap-around bridge strap shall be provided with locking tabs to secure receptacle face.
- E. Receptacle face shall be impact resistant nylon.

2.4 STRAIGHT BLADE RECEPTACLES

- A. Heavy-Duty, Simplex:
 - 1. Provide single heavy duty type receptacles, 2 pole, 3 wire, grounding, with green

hexagonal equipment ground screw, 20 ampere, 125 volts, with NEMA configuration 5-20R unless otherwise indicated.

Pass & Seymour	Hubbell	Leviton
5361	HBL5361	5361

- B. Heavy-Duty Duplex:
 - 1. Provide heavy duty duplex receptacles, 2 pole, 3 wire, grounding, 20 ampere, 125 volts, with NEMA configuration 5-20R unless otherwise indicated.

Pass & Seymour	Hubbell	Leviton
5362	HBL5352	5362

- C. Ground-Fault Circuit Interrupters:
 - Provide ground fault circuit interrupter, with heavy duty duplex receptacles, capable of being installed in a 2-1/2 inch deep outlet box without adapter. Shall be grounding type UL-rated Class A, Group 1, rated 20 amperes, 120 volts, 60 Hz; with solid-state ground fault sensing and signaling; with 5 milliamperes ground fault trip level. Equip with NEMA configuration 5-20R receptacle.
 - a. Test and reset buttons shall match color of face.
 - b. GFCI receptacles shall meet 2003 UL requirements.
 - c. If critical components within receptacle are damaged and the ground fault protection is lost, power to receptacle shall be automatically disconnected within the device.

Pass & Seymour	Hubbell	Leviton
2094	GFR5352	8899

- D. Duplex Convenience Isolated Ground Receptacles:
 - 1. Provide single heavy duty type receptacles, 2 pole, 3 wire, grounding, with green hexagonal equipment ground screw, 20 ampere, 125 volts, with NEMA configuration 5-20R unless otherwise indicated.
 - a. Device color shall match non isolated ground receptacles and have an orange triangle on the device.

Pass & Seymour	Hubbell	Leviton
IG6300	IG5362	5362IG

2.5 STRAIGHT BLADE RECEPTACLES

A. Heavy-Duty, Simplex:

1. Provide single heavy duty 'hospital' grade receptacles, 2 pole, 3 wire, grounding, with green hexagonal equipment ground screw, 20 ampere, 125 volts, with NEMA configuration 5-20R unless otherwise indicated.

Pass & Seymour	Hubbell	Leviton
8301	HBL8310	8310

- B. Heavy-Duty Duplex:
 - 1. Provide heavy duty duplex 'hospital' grade receptacles, 2 pole, 3 wire, grounding, 20 ampere, 125 volts, with NEMA configuration 5-20R unless otherwise indicated.

Pass & Seymour	Hubbell	Leviton
8300	HBL8300	8300

2.'Hospital' grade tamper resistant safety type receptacles shall be:

Pass & Seymour	Hubbell	Leviton
TR63	HBLSG63H	8300-SG

- C. Ground-Fault Circuit Interrupters:
 - Provide ground fault circuit interrupter, with heavy duty 'hospital' grade duplex receptacles, capable of being installed in a 2-1/2 inch deep outlet box without adapter. Shall be grounding type UL-rated Class A, Group 1, rated 20 amperes, 120 volts, 60 Hz; with solid-state ground fault sensing and signaling; with 5 milliamperes ground fault trip level. Equip with NEMA configuration 5-20R receptacle.
 - a. Test and reset buttons shall match color of face.
 - b. GFCI receptacles shall meet 2003 UL requirements.
 - c. If critical components within receptacle are damaged and the ground fault protection is lost, power to receptacle shall be automatically disconnected within the device.

Pass & Seymour	Hubbell	Leviton
2094HG	GF8300	6898-HG

SG62 GE 8300-T 5262-SG SG-62H

- H. Special Purpose Receptacle:
 - 1. Manufacturer: Same as general purpose receptacle.
 - 2. Configuration as shown on Drawings.
- 2.10 WIRING DEVICE ACCESSORIES
 - A. Wall Plates:
 - 1. Provide wall plates for single and combination wiring devices, of types, sizes, and with ganging and cutouts as indicated. Select plates which mate and match wiring devices to which attached. Construct with metal screws for securing plates to devices; screw

heads colored to match finish of plates; wall plates colored to match wiring devices. Provide plates possessing the following additional construction features:

- a. Material and Finish:
 1)Stainless Steel (0.04 inch thick type 302 satin finished)
 2)Nylon, smooth –color to match device
- 2. Device plates for surface mounted Type FS or FD boxes: Type FSK galvanized steel covers.
- 3. Device plates for surface mounted, 4 in. square boxes: 1/2 in. raised galvanized steel covers.
- B. Weatherproof Covers:
 - Weatherproof covers for all 125-250 volt, 15 and 20 ampere receptacles installed outdoors in a wet location shall be weatherproof, NEMA 3R, with hinged outlet enclosure rated for rain proof protection while outlet is in use. The unit shall be furnished with a neoprene gasket between the mounting surface and the enclosure, and between the mounting plate and the hinged cover to assure proper seal. Shall be equal to Intermatic, Die Cast with GFCI mounting plate, horizontal mount (duplex), Catalog # WP1010HMC, vertical mount (quad), Catalog # WP1030MC.
 - 2. Weatherproof covers for all other receptacles shall be cast aluminum with a gasketed cover. Shall be equal to Hubbell CWP26H (standard flush box) or Hubbell WPFS26 (surface FS box).

PART 3 EXECUTION

3.1 INSTALLATION

- A. Comply with NECA1, including the mounting heights listed in that standard, unless otherwise noted.
- B. All exterior receptacles shall be GFCI type mounted in weatherproof boxes.
- C. Ground receptacles with the insulated green ground wire from device ground screw to a bolted outlet box connection. Isolated ground receptacles shall

have the second ground wire (green with yellow tracer) ground the receptacle.

- D. Provide hospital grade receptacles in all "Patient Care" areas as per CEC Article 517.
- E. This Contractor shall check the switch location against the Architectural plans and shop drawings to be certain that switches are on the strike side of the door, regardless of swing shown on drawings. Edge of plate shall be not more than 12" from door frame.
- F. Install emergency switches which occur adjacent to normal light switches in separate boxes to maintain system's isolation in accordance with CEC required separation.

- G. Ground-fault circuit interrupter type receptacles may provide GFCI protection for downstream receptacles on same circuit only where located in same room as other receptacles.
- H. Provide hospital grade safety type, tamper resistant duplex receptacles in all pediatric locations.
- I. Provide stainless steel face plates for switches and receptacles in the following locations:
 - 1. All electrical rooms.
 - 2. All mechanical rooms (i.e. AHU rooms, pump rooms, boiler rooms, chiller rooms, tank level.)
 - 3. Elevator machine rooms.

3.2 FIELD QUALITY CONTROL

- A. Coordination with Other Trades:
 - 1. Take steps to insure that devices and their boxes are protected. Do not place wall finish materials over device boxes and do not cut holes for boxes with routers that are guided by riding against outside or inside of the boxes.
 - 2. Keep outlet boxes free of plaster, drywall joint compound, mortar, cement, concrete, dust, paint, and other material that may contaminate the raceway system, conductors, and cables.
 - 3. Install device boxes in brick or block walls so that the cover plate does not cross a joint unless the joint is troweled flush with the face of the wall.
 - 4. Install wiring devices after all wall preparation, including painting, is complete.
- B. Conductors:
 - 1. Do not strip insulation from conductors until just before they are spliced or terminated on devices.
 - 2. Strip insulation evenly around the conductor using tools designed for the purpose. Avoid scoring or nicking of solid wire or cutting strands from stranded wire.
 - 3. The length of free conductors at outlets for devices shall meet provisions of CEC, Article 300, without pigtails.
 - 4. Existing Conductors:
 - a. Cut back and pigtail, or replace all damaged conductors.
 - b. Straighten conductors that remain and remove corrosion and foreign matter.
 - c. Pigtailing existing conductors is permitted provided the outlet box is large enough.

- d. Connect wiring device grounding terminal to branch circuit equipment grounding conductor.
- C. Device Installation:
 - 1. Clean debris from every outlet box; including excess drywall mud.
 - 2. Replace all devices that have been in temporary use during construction or that show signs that they were installed before building finishing operations were complete.
 - 3. Keep each wiring device in its package or otherwise protected until it is time to connect conductors.
 - 4. Do not remove surface protection, such as plastic film and smudge covers, until the last possible moment. Clean exposed surfaces to remove spatters and restore finish.
 - 5. Connect devices to branch circuits using pigtails that are not less than 6 inches (152 mm)in length.
 - 6. When there is a choice, use side wiring with binding-head screw terminals. Wrap solid conductor tightly clockwise, 2/3 to 3/4 of the way around terminal screw.
 - 7. Use a torque screwdriver when a torque is recommended or required by the manufacturer.
 - 8. When conductors larger than No.12AWG are installed on 15-or 20-A circuits, splice No.12AWG pigtails for device connections.
 - 9. Tighten unused terminal screws on the device.
 - 10. When mounting into metal boxes, remove the fiber or plastic washers used to hold device mounting screws in yokes, allowing metal-to-metal contact. Provide extension rings to bring device flush with finished surface (do not use switch box extension rings/goof rings). Install devices plumb, level and rigidly in place.

- D. Receptacle Orientation:
 - 1. Install ground pin of vertically mounted receptacles down, and on horizontally mounted receptacles to the right.
 - 2. Install hospital-grade receptacles in patient-care areas with the ground pin or neutral blade at the top.
- E. Device Plates:
 - 1. Do not use oversized or extra-deep plates. Repair wall finishes and remount outlet boxes when standard device plates do not fit flush or do not cover rough wall opening.
 - 2. Use jumbo size plates for outlets installed in masonry walls.
 - 3. Install decorative coverplates on devices and blank outlets in finished areas.
- F. Dimmers:
 - 1. Install dimmers within terms of their listing.
 - 2. Verify that dimmers used for fan speed control are listed for that application.
 - 3. Install unshared neutral conductors on line and load side of dimmers according to manufacturers' device listing conditions in the written instructions.
 - 4. Verify dimmers achieve full rating of specified/designed load indicated after derating for ganging as instructed by manufacturer.
- G. Arrangement of Devices: Unless otherwise indicated, mount flush, with long dimension vertical and with grounding terminal of receptacles on bottom. Group adjacent switches under single, multigang wall plates where devices permit.

3.3 IDENTIFICATION

- A. Comply with Division26 Section "Identification for Electrical Systems."
 - 1. Receptacles: Identify panelboard and circuit number from which served on device.

3.4 INTERFACE WITH OTHER PRODUCTS

A. Coordinate locations of outlet boxes provided under Section "Raceway and Boxes for Electrical Systems" to obtain mounting heights specified and indicated on drawings.

3.5 FIELD QUALITY CONTROL

- A. Perform tests and inspections and prepare test reports.
- 1. In healthcare facilities, prepare reports that comply with recommendations in NFPA99.
 - a. Provide a grounding system test in accordance with NFPA 99 for all receptacles in patient care areas.

- 2. Test Instruments: Use instruments that comply with UL1436.
- 3. Provide operational testing for devices.
- 4. Test receptacles with Hubbell 5200, Woodhead 1750, or equal, for correct polarity, proper ground connection, and wiring faults.

END OF SECTION

THIS PAGE INTENTIONALLY LEFT BLANK

SECTION 26 28 13- FUSES

PART 1 GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. Section Includes:
 - 1. Cartridge fuses rated 600-V ac and less for use in control circuits, enclosed switchesenclosed controllers, and motor-control centers.
 - 2. Spare-fuse cabinets.

1.3 ACTION SUBMITTALS

- A. Product Data: For each type of product indicated. Include construction details, material, dimensions, descriptions of individual components, and finishes for spare-fuse cabinets. Include the following for each fuse type indicated:
 - 1. Dimensions and manufacturer's technical data on features, performance, electrical characteristics, and ratings.
 - 2. Current-limitation curves for fuses with current-limiting characteristics.
 - 3. Time-current coordination curves (average melt) and current-limitation curves (instantaneous peak let-through current) for each type and rating of fuse.
 - 4. Coordination charts and tables and relateddata.
 - 5. Fuse sizes for elevator feeders and elevator disconnect switches.

1.4 QUALITY ASSURANCE

- A. Source Limitations: Obtain fuses, for use within a specific product or circuit, from single source from single manufacturer.
- B. Electrical Components, Devices, and Accessories: Listed and labeled as defined in CEC, California Electrical Code, by a qualified testing agency, and marked for intended location and application.
- C. Comply with NEMAFU1 for cartridge fuses.

D.Comply with CEC, California Electrical Code.

1.5 COORDINATION

A. Coordinate fuse ratings with utilization equipment nameplate limitations of maximum fuse size and with system short-circuit current levels.

1.6 EXTRA MATERIALS

- A. Furnish extra materials that match products installed and that are packaged with protective covering for storage and identified with labels describing contents.
 - 1. Fuses: Equal to 10percent of quantity installed for each size and type, but no fewer than three of each size and type.

PART 2 PRODUCTS

2.1 MANUFACTURERS

- A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - 1. Cooper Bussmann, Inc.
 - 2. Edison Fuse, Inc.
 - 3. Ferraz Shawmut, Inc.
 - 4. Littelfuse, Inc.

2.2 CARTRIDGE FUSES

- A. Characteristics: NEMAFU1, nonrenewable cartridge fuses with voltage ratings consistent with circuit voltages.
- 2.3 SPARE-FUSE CABINET
 - A. Characteristics: Wall-mounted steel unit with full-length, recessed piano-hinged door and key-coded cam lock and pull.
 - 1. Size: Adequate forstorage of twelve spare fusesfor each size/type specified with 15percent spare capacity minimum.
 - 2. Finish: Gray, baked enamel.
 - 3. Identification: "SPARE FUSES" in 1-1/2-inch-high letters on exterior of door.
 - 4. Fuse Pullers: For each size of fuse, where applicable and available, from fuse manufacturer.

PART 3 EXECUTION

3.1 EXAMINATION

- A. Examine fuses before installation. Reject fuses that are moisture damaged or physically damaged.
- B. Examine holders to receive fuses for compliance with installation tolerances and other conditions affecting performance, such as rejection features.
- C. Examine utilization equipment nameplates and installation instructions. Install fuses of sizes and with characteristics appropriate for each piece of equipment.
- D. Evaluate ambient temperatures to determine if fuse rating adjustment factors must be applied to fuse ratings.
- E. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 FUSE APPLICATIONS

A. Cartridge Fuses:
1.Motor Branch Circuits: ClassRK5, time delay.
2.Control Circuits: ClassCC, fast acting.

3.3 INSTALLATION

- A. Install fuses in fusible devices. Arrange fuses so rating information is easily readable without removing fuse.
- B. Install spare-fuse cabinet(s)in each electrical room serving fused equipment.

3.4 IDENTIFICATION

A. Install labels complying with requirements for identification specified in Division26 Section "Identification for Electrical Systems" and indicating fuse replacement information on inside door of each fused switch and adjacent to each fuse block, socket, and holder.

END OF SECTION

THIS PAGE INTENTIONALLY LEFT BLANK
SECTION 26 28 16 - ENCLOSED SWITCHES AND CIRCUIT BREAKERS

PART 1 GENERAL

- 1.1 RELATED DOCUMENTS
 - A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division01 Specification Sections, apply to this Section.

1.2 RELATED WORK AND REQUIREMENTS

- A. Division 26 Section "Identification for Electrical Systems."
- B. Division 26 Section "Overcurrent Protective Device Coordination Study."
- C. Division 26 Section "Fuses."

1.3 SUMMARY

A. Section Includes:
1.Fusible switches.
2.Non-fusibleswitches.
3.Molded-case circuit breakers (MCCB's).
4.Molded-case switches.
5.Enclosures.

1.4 DEFINITIONS

- A. NC: Normally closed.
- B. NO: Normally open.
- C. SPDT: Single pole, double throw.

1.5 ACTION SUBMITTALS

- A. Product Data: For each type of enclosed switch, circuit breaker, accessory, and component indicated. Include dimensioned elevations, sections, weights, and manufacturers' technical data on features, performance, electrical characteristics, ratings, accessories, and finishes.
 - 1. Enclosure types and details for types other than NEMA250, Type1.
 - 2. Current and voltage ratings.
 - 3. Short-circuit current ratings (interrupting and withstand, as appropriate).

ENCLOSED SWITCHES AND CIRCUIT BREAKERS

17-0475 - Cuningham Group Architecture, Inc.

26 28 16-1

- 4. Include evidence of NRTL listing for series rating of installed devices.
- 5. Detail features, characteristics, ratings, and factory settings of individual overcurrent protective devices, accessories, and auxiliary components.
- 6. Include time-current coordination curves (average melt) for each type and rating of overcurrent protective device; include selectable ranges for each type of overcurrent protective device. Submit on translucent log-log graph paper. Submit electronic files for use with windows based computer software program.
- B. Shop Drawings: For enclosed switches and circuit breakers. Include plans, elevations, sections, details, and attachments to other work.
 - 1. Wiring Diagrams: For power, signal, and control wiring.
- C. Seismic Qualification Certificates: For enclosed switches and circuit breakers, accessories, and components, from manufacturer.
 - 1. Dimensioned Outline Drawings of Equipment Unit: Identify center of gravity and locate and describe mounting and anchorage provisions.
 - 2. Detailed description of equipment anchorage devices on which the certification is based and their installation requirements.

1.6 INFORMATIONAL SUBMITTALS

- A. Operation and Maintenance Data: For enclosed switches and circuit breakers to include in emergency, operation, and maintenance manuals. In addition to items specified in Division01 Section "Operation and Maintenance Data," include the following:
 - 1. Manufacturer's written instructions for testing and adjusting enclosed switches and circuit breakers.
 - 2. Manufacturer's instructions for replacing parts, performing cleaning, and operating and maintaining circuit breakers.
 - 3. Time-current coordination curves (average melt) for each type and rating of overcurrent protective device; include selectable ranges for each type of overcurrent protective device. Submit on translucent log-log graph paper. Submit coordination curves in electronic format capable of being used with Windows based software program.

1.7 QUALITY ASSURANCE

- A. Source Limitations: Obtain enclosed switches and circuit breakers, overcurrent protective devices, components, and accessories, within same product category, from single source from single manufacturer.
- B. Electrical Components, Devices, and Accessories: Listed and labeled as defined in CEC, California Electrical Code, by a qualified testing agency, and marked for intended location and application.

- C. Comply with requirements of the following regulatory agencies.
 1.California Electrical CodeCEC.
 2.American National Standards Institute (ANSI) C97.1.
 - 3. Underwriter's Laboratories (UL) Standard 489, Standards 198B through 198H.
 - 4. National Electrical Manufacturer's Association (NEMA) Standard Publication #AB1, AB2, and SG3.

1.8 COORDINATION

A. Coordinate layout and installation of switches, circuit breakers, and components with equipment served and adjacent surfaces. Maintain required workspace clearances and required clearances for equipment access doors and panels.

PART 2 PRODUCTS

2.1 FUSIBLE SWITCHES

- A. Manufacturers: Subject to compliance with requirements, provide product by one of the following:
 - 1. Eaton Electrical Inc.; Cutler-Hammer Business Unit.
 - 2. General Electric Company; GE Consumer & Industrial -Electrical Distribution.
 - 3. Siemens Energy & Automation, Inc.
 - 4. Square D.
- B. Type HD, Heavy Duty, Single Throw, 240 and 600-Vac, 1200A and Smaller: UL98 andNEMAKS1, horsepower rated, with clips or bolt pads to accommodate specified fuses, lockable handle with capability to accept three padlocks, and interlocked with cover in closed position.
- E. Accessories:
 - 1. Equipment Ground Kit: Internally mounted and labeled for copper and aluminum ground conductors.
 - 2. Neutral Kit: Internally mounted; insulated, capable of being grounded and bonded; labeled for copper and aluminum neutral conductors.
 - 3. Class R Fuse Kit: Provides rejection of other fuse types when ClassR fuses are specified.
 - 4. Auxiliary Contact Kit: Two NO/NC (Form "C") auxiliary contact(s), arranged to activate

before switch blades open.

5. Lugs: Compression type, suitable for number, size, and conductor material.

2.2 NON-FUSIBLE SWITCHES

- A. Manufacturers: Subject to compliance with requirements, provide product by one of the following:
 - 1. Eaton Electrical Inc.; Cutler-Hammer Business Unit.
 - 2. Square D; Schneider Electric
 - 3. General Electric Company; GE Consumer & Industrial -Electrical Distribution.
 - 4. Siemens Energy & Automation, Inc.
- B. Type HD, Heavy Duty, Single Throw, 240 and 600-Vac, 1200A and Smaller: UL98 and NEMAKS1, horsepower rated, lockable handle with capability to accept three padlocks, and interlocked with cover in closed position.
- E. Accessories:
 - 1. Equipment Ground Kit: Internally mounted and labeled for copper and aluminum ground conductors.
 - 2. Neutral Kit: Internally mounted; insulated, capable of being grounded and bonded; labeled for copper and aluminum neutral conductors.
 - 3. Auxiliary Contact Kit: Two NO/NC (Form "C") auxiliary contact(s), arranged to activate before switch blades open.
 - 4. Lugs: Compression type, suitable for number, size, and conductor material.

2.3 MOLDED-CASE CIRCUIT BREAKERS

- A. Manufacturers: Subject to compliance with requirements, provide product by one of the following:
 - 1. Eaton Electrical Inc.; Cutler-Hammer Business Unit.
 - 2. Square D; Schneider Electric.
 - 3. General Electric Company; GE Consumer & Industrial -Electrical Distribution.
 - 4. Siemens Energy & Automation, Inc.
- B. General Requirements: Comply with UL489, NEMAAB1, and NEMAAB3, with interrupting capacity to comply with available fault currents indicated on the drawings.
- C. Thermal-Magnetic Circuit Breakers: Inverse time-current element for low-level overloads

and instantaneous magnetic trip element for short circuitsin each pole. Adjustable magnetic trip setting for circuit-breaker frame sizes 150A and larger, adjustable from the front.

- D. Construct with over center, trip-free toggle type operating mechanisms with quick make, quick break action and positive handle trip indication. Construct breakers for mounting and operating in any physical position and operating in ambient temperature of 40 degrees C. Provide breakers with mechanical screw type removable connector lugs. AL/CU rated. Lugs shall be adequate to accept wire size indicated on the drawings.
- E. Features and Accessories:1.Standard frame sizes, trip ratings, and number of poles.
 - 2. Lugs: Compression type, suitable for number, size, trip ratings, and conductor material.
 - 3. Shunt Trip: Trip coil energized from separate circuit, with coil-clearing contact.

2.4 MOLDED-CASE SWITCHES

- A. Manufacturers: Subject to compliance with requirements, product by one of the following:
 - 1. Eaton Electrical Inc.; Cutler-Hammer Business Unit.
 - 2. Square D; Schneider Electric.
 - 3. General Electric Company; GE Consumer & Industrial -Electrical Distribution.
 - 4. Siemens Energy & Automation, Inc.
- B. General Requirements: MCCB with fixed, high-set instantaneous trip only, and short-circuit withstand rating equal to equivalent breaker frame size interrupting rating.
- C. Features and Accessories: 1.Standard frame sizes and number of poles.
 - 2. Lugs: Compression type, suitable for number, size, trip ratings, and conductor material.

2.5 ENCLOSURES

- A. Enclosed Switches and Circuit Breakers: NEMAAB1, NEMAKS1, NEMA250, and UL50, to comply with environmental conditions at each installed location.
 - 1. Indoor, Dry and Clean Locations: NEMA250, Type1.
 - 2. Outdoor Locations: NEMA250, Type3R.
 - 3. Kitchenand Wash-DownAreas: NEMA250, Type4X, stainless steel.
 - 4. Other Wet or Damp, Indoor Locations: NEMA250, Type4.
 - 5. Indoor Locations Subject to Dust, Falling Dirt, and Dripping Non-corrosiveLiquids: NEMA250, Type12.

6. Hazardous Areas Indicated on Drawings: NEMA250, Type9.

PART 3 EXECUTION

3.1 EXAMINATION

- A. Examine elements and surfaces to receive enclosed switches and circuit breakers for compliance with installation tolerances and other conditions affecting performance of the Work.
- B. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 INSTALLATION

- A. Install individual wall-mounted switches and circuit breakers with tops at uniform height unless otherwise indicated.
- B. Temporary Lifting Provisions: Remove temporary lifting eyes, channels, and brackets and temporary blocking of moving parts from enclosures and components.
- C. Install fuses infusible devices.
 - 1. Examine fusible equipment for size and type of fuse to ensure selective coordination. Provide fuses of size and type as required by equipment manufacturer.
 - 2. Install fuses only after selective coordination has been made.
 - 3. Fuses shall not be installed until equipment is ready to be energized. If fuse size is too small to physically fit in disconnect switch, provide fuse reduction kit.
- D. Circuit breakers and molded case switches shall be factory installed in enclosures.
- E. Install in accordance with manufacturer's written instructions, applicable requirements of NEC and NECA's "Standard of Installation" and in accordance with recognized industry practices.
- F. Comply with NECA1.

3.3 IDENTIFICATION

- A. Comply with requirements in Division26 Section "Identification for Electrical Systems."
 - 1. Identify field-installed conductors, interconnecting wiring, and components; provide warning signs.
 - 2. Label each enclosure with engraved metal or laminated-plastic nameplate.

END OF SECTION

THIS PAGE INTENTIONALLY LEFT BLANK

SECTION 26 29 13 - ENCLOSED CONTROLLERS

PART 1 GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division01 Specification Sections, apply to this Section.

1.2 RELATED WORK AND REQUIREMENTS

- A. Division 26 Section "Low-Voltage Electrical Power Conductors and Cables."
- B. Division 26 Section "Identification for Electrical Systems."
- C. Division 26 Section "Overcurrent Protective Device Coordination Study."
- D. Division 26 Section "Motor-Control Centers."
- E. Division 26 Section "Fuses."
- F. Division 26 Section "Enclosed Switches and Circuit Breakers."

1.3 SUMMARY

- A. This Section includes ac, enclosed controllers rated 600V and less, of the following types:
 - 1. Across-the-line, manual, magnetic and combination controllers.
 - 2. Reduced-voltage controllers.

1.4 ACTION SUBMITTALS

- A. Shop Drawings: For each enclosed controller.
 - 1. Include enclosure dimensions, elevations, sections, wiring diagrams, and details, including required clearances and service space around equipment. Show tabulations of installed devices, equipment features, and ratings. Include the following:
 - a. Each installed unit's type and details.
 - b. Thermal unit schedule.
 - c. Nameplate legends.
 - d. Short-circuit current rating of integrated unit.
 - e. Overcurrent protective devices in combination controllers.

- f. Features, characteristics, electrical ratings, and factory settings of individual overcurrent protective devices in combination controllers.
- g. Product data sheets with written installation instructions.
- h. Identify with tag number for proposed use.
- 2. Wiring Diagrams: Power, signal, and control wiring.
- B. Manufacturer Seismic Qualification Certification: Submit certification that enclosed controllers, accessories, and components will withstand seismic forces defined in Division26 Section "Vibration and Seismic Controls for Electrical Systems" Include the following:
 - 1. ASCE 7-05 Special Seismic Certification.
 - 2. Dimensioned Outline Drawings of Equipment Unit: Identify center of gravity and locate and describe mounting and anchorage provisions.
 - 3. Detailed description of equipment anchorage devices on which the certification is based and their installation requirements.

1.5 INFORMATIONAL SUBMITTALS

- A. Operation and Maintenance Data: For enclosed controllers to include in emergency, operation, and maintenance manuals. In addition to items specified in Division01 Section "Operation and Maintenance Data," include the following:
 - 1. Manufacturer's printed instructions for replacing parts, performing cleaning, and operating and maintaining motor starters.
 - 2. Repair parts list.
 - 3. Field quality control test results.
 - 4. Routine maintenance requirements for enclosed controllers and all installed components.
 - 5. Manufacturer's written instructions for testing and adjusting overcurrent protective devices.
- B. Load-Current and thermal overload List: Compile after motors have been installed and arrange to demonstrate that selection of thermal overloads suits actual motor nameplate full-load currents.
- C. Load-Current and List of Settings of Adjustable Overload Relays: Compile after motors have been installed and arrange to demonstrate that dip switch settings for motor running overload protection suit actual motor to be protected.

1.6 QUALITY ASSURANCE

A. Source Limitations: Obtain enclosed controllers of a single type through one source from a single manufacturer.

- B. Electrical Components, Devices, and Accessories: Listed and labeled as defined in CEC, California Electrical Code, by a testing agency acceptable to authorities having jurisdiction, and marked for intended use.
- C. Requirements of Regulatory Agencies:
 - 1. Comply with CEC, California Electrical Code.
 - 2. IEEE Compliance. IEEE Standard 241.
 - 3. Underwriters' Laboratories, Inc. (UL). UL 486A and UL 508.
- D. Reference Standards: National Electrical Manufacturers' Association (NEMA). NEMA Standard ICS 2.
- 1.7 DELIVERY, STORAGE, AND HANDLING
 - A. Store enclosed controllers indoors in clean, dry space with uniform temperature to prevent condensation. Protect enclosed controllers from exposure to dirt, fumes, water, corrosive substances, and physical damage.
 - B. Do not store in areas subject to weather.
 - C. Protect motor starters against damage from work of other trades.

1.8 COORDINATION

- A. Coordinate layout and installation of enclosed controllers with other construction including conduit, piping, equipment, and adjacent surfaces. Maintain required workspace clearances and required clearances for equipment access doors and panels.
- B. Coordinate features of enclosed controllers and accessory devices with pilot devices and control circuits to which they connect.
- C. Coordinate features, accessories, and functions of each enclosed controller with ratings and characteristics of supply circuit, motor, required control sequence, and duty cycle of motor and load.

1.9 EXTRA MATERIALS

- A. Furnish extra materials described below that match products installed and that are packaged with protective covering for storage and identified with labels describing contents.
 - 1. Spare Fuses: Furnish one spare for every five installed, but no fewer than one set of three of each type and rating.
 - 2. Indicating Lights: 25% of each type installed, but no less than two of each type installed.

PART 2 PRODUCTS

2.1 MANUFACTURERS

- A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - 1. Eaton; Cutler-Hammer
 - 2. Square D.
 - 3. General Electrical Company; GE Industrial Systems.
 - 4. Siemens/Furnas Controls.

2.2 ACROSS-THE-LINE ENCLOSED CONTROLLERS

- A. Manual Controller: NEMAICS2, general purpose, Class A, with "quick-make, quick-break" toggle action, marked to show whether unit is "OFF," "ON," or "TRIPPED."
 - 1. Provide 2 pole fractional HP manual motor starters, of sizes and ratings indicated. Provide with overload protection.
 - 2. Provide starters with double-break silver alloy contacts, visible from both sides of starter; green pilot light, toggle switch guard and switch capable of being padlocked OFF.
 - 3. Enclose in NEMA enclosure.
 - 4. Provide other accessories as indicated elsewhere in this specification.
- B. Magnetic Controller: NEMAICS2, Class A, full voltage, non-reversing, across the line, unless otherwise indicated.
 - 1. Control Circuit: 120V; obtained from integral control power transformer.
 - 2. Provide other accessories as indicated elsewhere in this specification.
 - 3. Enclose in NEMA enclosure.
- C. Combination Magnetic Controller: Factory-assembled combination controller and heavy duty disconnect switch.
 - 1. Circuit-Breaker Disconnecting Means: NEMAAB1, motor-circuit protector with field-adjustable, short-circuit trip coordinated with motor locked-rotor amperes.
 - 2. Circuit breaker interlocked with cover, mounted in common enclosure, of types, ratings, and NEMA sizes required to match motor horsepower.
 - 3. Equip starters with block type manual reset overload relays and with circuit breaker.
 - 4. Provide operating handle for disconnect switch mechanism with indication and control of switch position, with enclosure door either opened or closed, and capable of being locked in OFF position, with a padlock.
 - 5. Starter characteristics shall be the same as specified for magnetic controllers.
 - 6. Provide other accessories as indicated elsewhere in this specification.
 - 7. Enclose in NEMA enclosure.

2.4 ENCLOSURES

- A. Description: Flush-or surface-mounting cabinets as indicated. NEMA250, Type1, unless otherwise indicated to comply with environmental conditions at installed location. Provide flush enclosures where starters are located in finished spaces and surface enclosures where starters are located in unfinished areas.
 - 1. Outdoor Locations: NEMA250, Type3R. Code gauge steel with rust inhibiting primary coat and baked enamel finish.
 - 2. Kitchen Areas: NEMA250, Type4X, stainless steel.
 - 3. Other Wet or Damp Indoor Locations: NEMA250, Type4.
 - 4. Hazardous Areas Indicated on Drawings: NEMA250, Type7C.
 - 5. Corrosive Areas. NEMA250, Type4X, stainless steel.

2.5 ACCESSORIES

- A. All magnetic combination non-reversing starters, multi-speed starters, and reduced voltage starters shall be provided with the following features and accessories. Devices shall be factory installed in controller enclosure, unless otherwise indicated.
 - 1. Overload Relay: Provide three phase solid state overload relay with inherent phase loss and unbalance protection. Size from motor nameplate full load amperage. Select this option for overload relay, if automatic resetting capability is required.
 - 2. Push-Button Stations, Pilot Lights, and Selector Switches: NEMAICS2, heavy-duty, oil-tight type.
 - a. Pilot lights, transformer type -"red" mounted on door to indicate motor running.
 - b. Selector switch, 3 position (Hand-Off-Automatic), manual return. Where noted on drawings, starters for exhaust fans shall have a 2 position selector switch, off-automatic.
 - 3. Legend plates, standard, with legends as indicated.
 - 4. Provide one normally open and two normally closed auxiliary contacts.
 - 5. Control Relays: Auxiliary and adjustable time-delay relays.
 - 6. Control circuits:
 - a. Voltage not to exceed 120Vand as required by control system.
 - b. Control transformer mounted in starter enclosure.
 - c. Primary fusing.
 - d. Fuses on one secondary line.
 - e. One secondary line grounded.

- f. Transformer sized for device accessories connected thereto and 25% extra capacity minimum. Minimum size shall be 50 VA.
- g. All starters with control circuits which derive their power from a source other than from the starter itself shall be complete with an auxiliary control circuit disconnect (ACCD) to de-energize the circuit whenever the door or cover to the starter is opened. In the case of combination starters, an auxiliary contact or fourth pole may be added to the disconnect switch in lieu of the ACCD.

2.6 SHORT CIRCUIT RATING

A. Short Circuit Rating: The short circuit current rating of each controller shall be the same as the associated upstream overcurrent protective device.

2.7 FACTORY FINISHES

A. Finish: Manufacturer's standard grey paint applied to factory-assembled and -tested enclosed controllers before shipping.

PART 3 EXECUTION

3.1 EXAMINATION

A. Examine areas and surfaces to receive enclosed controllers for compliance with requirements, installation tolerances, and other conditions affecting performance. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 APPLICATIONS

- A. Select features of each enclosed controller to coordinate with ratings and characteristics of supply circuit and motor; required control sequence; duty cycle of motor, controller, and load; and configuration of pilot device and control circuit affecting controller functions.
- B. Select horsepower rating of controllers to suit motor controlled.

3.3 INSTALLATION

- A. Install in accordance with manufacturer's written instructions, applicable requirements of CEC and NECA's "Standard of Installation" and in accordance with recognized practices.
- B. Install by mounting plumb and firmly to wall or structural surface.
- C. For control equipment at walls, bolt units to wall or mount on lightweight structural-steel channels bolted to wall. For controllers not at walls, provide freestanding racks complying with Division26 Section "Hangers and Supports for Electrical Systems."
- D. Enclosed Controller Fuses: Install fuses in each fusible switch. Comply with requirements in Division26 Section "Fuses."

3.4 IDENTIFICATION

- A. Identify enclosed controller, components, and control wiring according to Division26 Section "Identification for Electrical Systems."
- 3.5 CONTROL WIRING INSTALLATION
 - A. Control wiring, regardless of voltage, shall be the responsibility of the contractor supplying the motor, unless specifically noted otherwise.

3.6 CONNECTIONS

- A. Conduit installation requirements are specified in other Division26 Sections. Drawings indicate general arrangement of conduit, fittings, and specialties.
- B. Ground equipment according to Division26 Section "Grounding and Bonding for Electrical Systems."
- 3.7 ADJUSTINGAND CLEANING
 - A. Tighten wire and cable connections using torque wrench or torque driver to achieve manufacturer's recommended torque values without over tightening.
 - B. Verify overcurrent protection thermal unit size with motor nameplate to provide proper operation and compliance with CEC.
 - C. Clean interior of enclosure.
 - D. Touch up paint scratched or marred surfaces to match original finish.

3.8 DEMONSTRATION

A. Train Owner's maintenance personnel to adjust, operate, and maintain enclosed controllers. Refer to Division01 Section "Demonstration and Training."

END OF SECTION

THIS PAGE INTENTIONALLY LEFT BLANK

SECTION 262923 - VARIABLE-FREQUENCY MOTOR CONTROLLERS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section includes separately enclosed, preassembled, combination VFCs, rated 600 V and less, for speed control of three-phase, squirrel-cage induction motors.

1.3 DEFINITIONS

- A. BAS: Building automation system.
- B. CE: Conformite Europeene (European Compliance).
- C. CPT: Control power transformer.
- D. EMI: Electromagnetic interference.
- E. LED: Light-emitting diode.
- F. NC: Normally closed.
- G. NO: Normally open.
- H. OCPD: Overcurrent protective device.
- I. PID: Control action, proportional plus integral plus derivative.
- J. RFI: Radio-frequency interference.
- K. VFC: Variable-frequency motor controller.

1.4 ACTION SUBMITTALS

- A. Product Data: For each type and rating of VFC indicated.
 - 1. Include dimensions and finishes for VFCs.
 - 2. Include rated capacities, operating characteristics, electrical characteristics, and furnished specialties and accessories.

- B. Shop Drawings: For each VFC indicated.
 - 1. Include mounting and attachment details.
 - 2. Include details of equipment assemblies. Indicate dimensions, weights, loads, required clearances, method of field assembly, components, and location and size of each field connection.
 - 3. Include diagrams for power, signal, and control wiring.

1.5 INFORMATIONAL SUBMITTALS

- A. Coordination Drawings: Floor plans, drawn to scale, showing dimensioned layout on which the following items are shown and coordinated with each other, using input from installers of the items involved:
 - 1. Required working clearances and required area above and around VFCs.
 - 2. Show VFC layout and relationships between electrical components and adjacent structural and mechanical elements.
 - 3. Show support locations, type of support, and weight on each support.
 - 4. Indicate field measurements.
- B. Qualification Data: For testing agency.
- C. Seismic Qualification Certificates: For each VFC, accessories, and components, from manufacturer.
 - 1. Certificate of compliance.
 - 2. Dimensioned Outline Drawings of Equipment Unit: Identify center of gravity and locate and describe mounting and anchorage provisions.
 - 3. Detailed description of equipment anchorage devices on which the certification is based, and their installation requirements.
- D. Product Certificates: For each VFC from manufacturer.
- E. Harmonic Analysis Report: Provide Project-specific calculations and manufacturer's statement of compliance with IEEE 519.

1.6 CLOSEOUT SUBMITTALS

- A. Operation and Maintenance Data: For VFCs to include in emergency, operation, and maintenance manuals.
 - 1. In addition to items specified in Section 017823 "Operation and Maintenance Data," include the following:
 - a. Manufacturer's written instructions for testing and adjusting thermalmagnetic circuit breaker and motor-circuit protector trip settings.
 - b. Manufacturer's written instructions for setting field-adjustable overload relays.

- c. Manufacturer's written instructions for testing, adjusting, and reprogramming microprocessor control modules.
- d. Manufacturer's written instructions for setting field-adjustable timers, controls, and status and alarm points.
- e. Load-Current and Overload-Relay Heater List: Compile after motors have been installed, and arrange to demonstrate that selection of heaters suits actual motor nameplate, full-load currents.
- f. Load-Current and List of Settings of Adjustable Overload Relays: Compile after motors have been installed, and arrange to demonstrate that switch settings for motor-running overload protection suit actual motors to be protected.

1.7 MAINTENANCE MATERIAL SUBMITTALS

- A. Furnish extra materials that match products installed and that are packaged with protective covering for storage and identified with labels describing contents.
 - 1. Power Fuses: Equal to 10 percent of quantity installed for each size and type, but no fewer than three of each size and type.
 - 2. Control Power Fuses: Equal to 10 percent of quantity installed for each size and type, but no fewer than two of each size and type.
 - 3. Indicating Lights: Two of each type and color installed.
 - 4. Auxiliary Contacts: Furnish one spare(s) for each size and type of magnetic controller installed.
 - 5. Power Contacts: Furnish three spares for each size and type of magnetic contactor installed.
 - 6.

1.8 QUALITY ASSURANCE

.

- A. Testing Agency Qualifications: Member company of NETA or an NRTL.
 - 1. Testing Agency's Field Supervisor: Currently certified by NETA to supervise on-site testing.

1.9 DELIVERY, STORAGE, AND HANDLING

A. Product Selection for Restricted Space: Drawings indicate maximum dimensions for VFCs, including clearances between VFCs, and adjacent surfaces and other items.

1.10 WARRANTY

- A. Special Warranty: Manufacturer agrees to repair or replace VFCs that fail in materials or workmanship within specified warranty period.
 - 1. Warranty Period: Five years from date of Substantial Completion.

PART 2 - PRODUCTS

2.1 MANUFACTURERS

- A. Manufacturers: Subject to compliance with requirements, provide products by the following:
 - 1. ABB, OR Approved Equal Only bearing OSP Certification.

2.2 SYSTEM DESCRIPTION

- A. General Requirements for VFCs:
 - 1. VFCs and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.
 - 2. Comply with NEMA ICS 7, NEMA ICS 61800-2, and UL 508A.
- B. Application: variable torque.
- C. VFC Description: Variable-frequency motor controller, consisting of power converter that employs pulse-width-modulated inverter, factory built and tested in an enclosure, with integral disconnecting means and overcurrent and overload protection; listed and labeled by an NRTL as a complete unit; arranged to provide self-protection, protection, and variable-speed control of one or more three-phase induction motors by adjusting output voltage and frequency.
 - 1. Units suitable for operation of NEMA MG 1, Design A and Design B motors, as defined by NEMA MG 1, Section IV, Part 30, "Application Considerations for Constant Speed Motors Used on a Sinusoidal Bus with Harmonic Content and General Purpose Motors Used with Adjustable-Voltage or Adjustable-Frequency Controls or Both."
 - 2. Units suitable for operation of inverter-duty motors as defined by NEMA MG 1, Section IV, Part 31, "Definite-Purpose Inverter-Fed Polyphase Motors."
 - 3. Listed and labeled for integrated short-circuit current (withstand) rating by an NRTL acceptable to authorities having jurisdiction.
- D. Design and Rating: Match load type, such as fans, blowers, and pumps; and type of connection used between motor and load such as direct or through a power-transmission connection.
- E. Output Rating: Three phase; 10 to 60 Hz, with voltage proportional to frequency throughout voltage range; maximum voltage equals input voltage.
- F. Unit Operating Requirements:
 - 1. Input AC Voltage Tolerance: Plus 10 and minus 10 percent of VFC input voltage rating.
 - 2. Input AC Voltage Unbalance: Not exceeding 3 percent.
 - 3. Input Frequency Tolerance: Plus or minus 3 percent of VFC frequency rating.

- 4. Minimum Efficiency: 97 percent at 60 Hz, full load.
- 5. Minimum Displacement Primary-Side Power Factor: 98 percent under any load or speed condition.
- 6. Minimum Short-Circuit Current (Withstand) Rating: 65 kA.
- 7. Ambient Temperature Rating: Not less than 32 deg F and not exceeding 104 deg F.
- 8. Humidity Rating: Less than 95 percent (noncondensing).
- 9. Altitude Rating: Not exceeding 1000 feet.
- 10. Overload Capability: 1.5 times the base load current for 60 seconds; minimum of 1.8 times the base load current for three seconds.
- 11. Speed Regulation: Plus or minus 5 percent.
- 12. Output Carrier Frequency: Selectable; 0.5 to 15 kHz.
- 13. Stop Modes: Programmable; includes fast, free-wheel, and dc injection braking.
- G. Inverter Logic: Microprocessor based, 32 bit, isolated from all power circuits.
- H. Isolated Control Interface: Allows VFCs to follow remote-control signal over a minimum 40:1 speed range.
 - 1. Signal: Electrical.
- I. Internal Adjustability Capabilities:
 - 1. Minimum Speed: 5 to 25 percent of maximum rpm.
 - 2. Maximum Speed: 80 to 100 percent of maximum rpm.
 - 3. Acceleration: 0.1 to 999.9 seconds.
 - 4. Deceleration: 0.1 to 999.9 seconds.
 - 5. Current Limit: 30 to minimum of 150 percent of maximum rating..
- J. Self-Protection and Reliability Features:
 - 1. Surge Suppression: Factory installed as an integral part of the VFC, complying with UL 1449 SPD, Type 1 or Type 2.
 - 2. Loss of Input Signal Protection: Selectable response strategy, including speed default to a percent of the most recent speed, a preset speed, or stop; with alarm.
 - 3. Under- and overvoltage trips.
 - 4. Inverter overcurrent trips.
 - 5. VFC and Motor-Overload/Overtemperature Protection: Microprocessor-based thermal protection system for monitoring VFCs and motor thermal characteristics, and for providing VFC overtemperature and motor-overload alarm and trip; settings selectable via the keypad.
 - 6. Critical frequency rejection, with three selectable, adjustable deadbands.
 - 7. Instantaneous line-to-line and line-to-ground overcurrent trips.
 - 8. Loss-of-phase protection.
 - 9. Reverse-phase protection.
 - 10. Short-circuit protection.
 - 11. Motor-overtemperature fault..

- K. Automatic Reset/Restart: Attempt three restarts after drive fault or on return of power after an interruption and before shutting down for manual reset or fault correction; adjustable delay time between restart attempts.
- L. Power-Interruption Protection: To prevent motor from re-energizing after a power interruption until motor has stopped, unless "Bidirectional Autospeed Search" feature is available and engaged.
- M. Bidirectional Autospeed Search: Capable of starting VFC into rotating loads spinning in either direction and returning motor to set speed in proper direction, without causing damage to drive, motor, or load.
- N. Torque Boost: Automatically varies starting and continuous torque to at least 1.5 times the minimum torque to ensure high-starting torque and increased torque at slow speeds.
- O. Motor Temperature Compensation at Slow Speeds: Adjustable current fall-back based on output frequency for temperature protection of self-cooled, fan-ventilated motors at slow speeds.
- P. Integral Input Disconnecting Means and OCPD: UL 489, molded-case switch, with power fuse block and current-limiting fuses with pad-lockable, door-mounted handle mechanism.
 - 1. Disconnect Rating: Not less than 115 percent of NFPA 70 motor full-load current rating or VFC input current rating, whichever is larger.
 - 2. Auxiliary Contacts: NO or NC, arranged to activate before switch blades open.
 - 3. Auxiliary contacts "a" and "b" arranged to activate with circuit-breaker handle.
 - 4. Alarm contact that operates only when circuit breaker has tripped.

2.3 PERFORMANCE REQUIREMENTS

- A. Seismic Performance: VFCs shall withstand the effects of earthquake motions determined according to ASCE/SEI 7. The designated VFCs shall be tested and certified by an NRTL as meeting the ICC-ES AC 156 test procedure requirements.
 - 1. The term "withstand" means "the unit will remain in place without separation of any parts when subjected to the seismic forces specified and the unit will be fully operational after the seismic event."

2.4 CONTROLS AND INDICATION

- A. Status Lights: Door-mounted LED indicators displaying the following conditions:
 - 1. Power on.
 - 2. Run.
 - 3. Overvoltage.
 - 4. Line fault.
 - 5. Overcurrent.

- 6. External fault.
- B. Panel-Mounted Operator Station: Manufacturer's standard front-accessible, sealed keypad and plain-English-language digital display; allows complete programming, program copying, operating, monitoring, and diagnostic capability.
 - 1. Keypad: In addition to required programming and control keys, include keys for HAND, OFF, and AUTO modes.
- C. Historical Logging Information and Displays:
 - 1. Real-time clock with current time and date.
 - 2. Running log of total power versus time.
 - 3. Total run time.
 - 4. Fault log, maintaining last four faults with time and date stamp for each.
 - 5.
- D. Indicating Devices: Digital display and additional readout devices as required, mounted flush in VFC door and connected to display VFC parameters including, but not limited to:
 - 1. Output frequency (Hz).
 - 2. Motor speed (rpm).
 - 3. Motor status (running, stop, fault).
 - 4. Motor current (amperes).
 - 5. Motor torque (percent).
 - 6. Fault or alarming status (code).
 - 7. PID feedback signal (percent).
 - 8. DC-link voltage (V dc).
 - 9. Set point frequency (Hz).
 - 10. Motor output voltage (V ac)..
- E. Control Signal Interfaces:
 - 1. Electric Input Signal Interface:
 - a. A minimum of two programmable analog inputs: 0- to 10-V dc or 4- to 20-mA dc.
 - b. A minimum of six multifunction programmable digital inputs.
 - 2. Remote Signal Inputs: Capability to accept any of the following speed-setting input signals from the BAS or other control systems:
 - a. 0- to 10-V dc.
 - b. 4- to 20-mA dc.
 - c. Potentiometer using up/down digital inputs.
 - d. Fixed frequencies using digital inputs..
 - 3. Output Signal Interface: A minimum of two programmable analog output signal(s) (0- to 10-V dc or 4- to 20-mA dc), which can be configured for any of the following:

- a. Output frequency (Hz).
- b. Output current (load).
- c. DC-link voltage (V dc).
- d. Motor torque (percent).
- e. Motor speed (rpm).
- f. Set point frequency (Hz)..
- 4. Remote Indication Interface: A minimum of two programmable dry-circuit relay outputs (120-V ac, 1 A) for remote indication of the following:
 - a. Motor running.
 - b. Set point speed reached.
 - c. Fault and warning indication (overtemperature or overcurrent).
 - d. PID high- or low-speed limits reached..
- F. BAS Interface: (To be coordinated with existing Siemens systems by contractors) Factory-installed hardware and software shall interface with BAS to monitor, control, display, and record data for use in processing reports. VFC settings shall be retained within VFC's nonvolatile memory.
 - 1. Hardwired Points:
 - a. Monitoring: On-off status, <Insert monitoring point>.
 - b. Control: On-off operation, <Insert control point>.
 - 2. Communication Interface: Comply with ASHRAE 135. Communication shall interface with BAS to remotely control and monitor lighting from a BAS operator workstation. Control features and monitoring points displayed locally at lighting panel shall be available through the BAS.

2.5 LINE CONDITIONING AND FILTERING

- A. Input Line Conditioning: Based on the manufacturer's harmonic analysis study and report, provide input filtering, as required, to limit total demand (harmonic current) distortion and total harmonic voltage demand at the defined point of common coupling to meet IEEE 519 recommendations.
- B. Output Filtering: Match requirments of Manufacturer Recommendations from Harmonic Analysis provided by ABB.
- C. EMI/RFI Filtering: CE marked; certify compliance with IEC 61800-3 for Category C2.

2.6 BYPASS SYSTEMS

A. Bypass Operation: Safely transfers motor between power converter output and bypass circuit, manually, automatically, or both. Selector switches set modes and indicator lights indicate mode selected. Unit is capable of stable operation (starting, stopping, and running) with motor completely disconnected from power converter.

- B. Bypass Mode: Field-selectable automatic or manual, allows local and remote transfer between power converter and bypass contactor and retransfer, either via manual operator interface or automatic-control system feedback.
- C. Bypass Controller: Three-contactor-style bypass allows motor operation via the power converter or the bypass controller; with input isolating switch and barrier arranged to isolate the power converter input and output and permit safe testingof the power converter, both energized and de-energized, while motor is operating in bypass mode.
 - 1. Bypass Contactor: Load-break, IEC -rated contactor.
 - 2. Input and Output Isolating Contactors: Non-load-break, IEC -rated contactors.
 - 3. Isolating Switch: Non-load-break switch arranged to isolate power converter and permit safe troubleshooting and testing of the power converter, both energized and de-energized, while motor is operating in bypass mode; pad-lockable, door-mounted handle mechanism.
- D. Bypass Contactor Configuration: Full-voltage (across-the-line) Reduced-voltage (autotransformer) type.
 - 1. NORMAL/BYPASS selector switch.
 - 2. HAND/OFF/AUTO selector switch.
 - 3. NORMAL/TEST Selector Switch: Allows testing and adjusting of VFC while the motor is running in the bypass mode.
 - 4. Contactor Coils: Pressure-encapsulated type with coil transient suppressors.
 - a. Operating Voltage: Depending on contactor NEMA size and line-voltage rating, manufacturer's standard matching control power or line voltage.
 - b. Power Contacts: Totally enclosed, double break, and silver-cadmium oxide; assembled to allow inspection and replacement without disturbing line or load wiring.
 - 5. Control Circuits: 120 -V ac; obtained from integral CPT, with primary and secondary fuses, with CPT of sufficient capacity to operate all integral devices and remotely located pilot, indicating, and control devices.
 - a. CPT Spare Capacity: 200 VA.
 - 6. Overload Relays: NEMA ICS 2.
 - a. Solid-State Overload Relays:
 - 1) Switch or dial selectable for motor-running overload protection.
 - 2) Sensors in each phase.
 - 3) Class 10/20 selectable tripping characteristic selected to protect motor against voltage and current unbalance and single phasing.
 - 4) Class II ground-fault protection, with start and run delays to prevent nuisance trip on starting.
 - 5) Analog communication module.
 - b. NC or NO isolated overload alarm contact.

c. External overload, reset push button.

2.7 OPTIONAL FEATURES

- A. Motor Preheat Function: Preheats motor when idle to prevent moisture accumulation in the motor.
- B. Remote Indicating Circuit Terminals: Mode selection, controller status, and controller fault.
- C. Remote digital operator kit.
- D. Communication Port: RS-232 port, USB 2.0 port, or equivalent connection capable of connecting a printer and a notebook computer.

2.8 ENCLOSURES

- A. VFC Enclosures: NEMA 250, to comply with environmental conditions at installed location.
 - 1. Indoor Locations Subject to Dust, Falling Dirt, and Dripping Noncorrosive Liquids: Type 12.
- B. Plenum Rating: UL 1995; NRTL certification label on enclosure, clearly identifying VFC as "Plenum Rated."

2.9 ACCESSORIES

- A. General Requirements for Control-Circuit and Pilot Devices: NEMA ICS 5; factory installed in VFC enclosure cover unless otherwise indicated.
 - 1. Push Buttons: Covered.
 - 2. Pilot Lights: Push to test.
 - 3. Selector Switches: type.
 - 4. Stop and Lockout Push-Button Station: Momentary-break, push-button station with a factory-applied hasp arranged so padlock can be used to lock push button in depressed position with control circuit open.
- B. Reversible NC/NO bypass contactor auxiliary contact(s).
- C. Control Relays: Auxiliary and adjustable solid-state time-delay relays.
- D. Phase-Failure, Phase-Reversal, and Undervoltage and Overvoltage Relays: Solidstate sensing circuit with isolated output contacts for hard-wired connections. Provide adjustable undervoltage, overvoltage, and time-delay settings.
 - 1. Current Transformers: Continuous current rating, basic impulse insulating level (BIL) rating, burden, and accuracy class suitable for connected circuitry. Comply with IEEE C57.13.

- E. Breather and drain assemblies, to maintain interior pressure and release condensation in NEMA 250, Type 12 enclosures installed outdoors or in unconditioned interior spaces subject to humidity and temperature swings.
- F. Spare control-wiring terminal blocks; unwired..

2.10 SOURCE QUALITY CONTROL

- A. Testing: Test and inspect VFCs according to requirements in NEMA ICS 61800-2.
 - 1. Test each VFC while connected to its specified motor.
 - 2. Verification of Performance: Rate VFCs according to operation of functions and features specified.
- B. VFCs will be considered defective if they do not pass tests and inspections.
- C. Prepare test and inspection reports.

PART 3 - EXECUTION

3.1 EXAMINATION

- A. Examine areas, surfaces, and substrates to receive VFCs, with Installer present, for compliance with requirements for installation tolerances, location and clearance requirements, and other conditions affecting performance of the Work.
- B. Examine VFC before installation. Reject VFCs that are wet, moisture damaged, or mold damaged.
- C. Examine roughing-in for conduit systems to verify actual locations of conduit connections before VFC installation.
- D. Prepare written report, endorsed by Installer, listing conditions detrimental to performance of the Work
- E. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 INSTALLATION

- A. Wall-Mounting Controllers: Install with tops at uniform height and with disconnect operating handles not higher than 79 inches above finished floor, unless otherwise indicated, and by bolting units to wall or mounting on lightweight structural-steel channels bolted to wall. For controllers not on walls, provide freestanding racks complying with Section 260529 "Hangers and Supports for Electrical Systems."
- B. Seismic Bracing: Comply with requirements specified in Section 260548.16 "Seismic Controls for Electrical Systems.", and all other OSHPD requirements.

- C. Temporary Lifting Provisions: Remove temporary lifting eyes, channels, and brackets and temporary blocking of moving parts from enclosures and components.
- D. Install fuses in each fusible-switch VFC.
- E. Install fuses in control circuits if not factory installed. Comply with requirements in Section 262813 "Fuses."
- F. Install heaters in thermal-overload relays. Select heaters based on actual nameplate full-load amperes after motors are installed.
- G. Install, connect, and fuse thermal-protector monitoring relays furnished with motordriven equipment.
- H. Comply with NECA 1.

3.3 CONTROL WIRING INSTALLATION

- A. Install wiring between VFCs and remote devices and facility's central-control system. Comply with requirements in Section 260523 "Control-Voltage Electrical Power Cables."
- B. Bundle, train, and support wiring in enclosures.
- C. Connect selector switches and other automatic-control devices where applicable.
 - 1. Connect selector switches to bypass only those manual- and automatic-control devices that have no safety functions when switches are in manual-control position.
 - 2. Connect selector switches with control circuit in both manual and automatic positions for safety-type control devices such as low- and high-pressure cutouts, high-temperature cutouts, and motor-overload protectors.

3.4 IDENTIFICATION

- A. Identify VFCs, components, and control wiring. Comply with requirements for identification specified in Section 260553 "Identification for Electrical Systems."
 - 1. Identify field-installed conductors, interconnecting wiring, and components; provide warning signs.
 - 2. Label each VFC with engraved nameplate.
 - 3. Label each enclosure-mounted control and pilot device.
- B. Operating Instructions: Frame printed operating instructions for VFCs, including control sequences and emergency procedures. Fabricate frame of finished metal, and cover instructions with clear acrylic plastic. Mount on front of VFC units.

3.5 FIELD QUALITY CONTROL

- A. Testing Agency: Engage a qualified testing agency to perform tests and inspections.
- B. Acceptance Testing Preparation:
 - 1. Test insulation resistance for each VFC element, bus, component, connecting supply, feeder, and control circuit.
 - 2. Test continuity of each circuit.
- C. Tests and Inspections:
 - 1. Inspect VFC, wiring, components, connections, and equipment installation. Test and adjust controllers, components, and equipment.
 - 2. Test insulation resistance for each VFC element, component, connecting motor supply, feeder, and control circuits.
 - 3. Test continuity of each circuit.
 - 4. Verify that voltages at VFC locations are within 10 percent of motor nameplate rated voltages. If outside this range for any motor, notify Owner before starting the motor(s).
 - 5. Test each motor for proper phase rotation.
 - 6. Perform tests according to the Inspection and Test Procedures for Adjustable Speed Drives stated in NETA Acceptance Testing Specification. Certify compliance with test parameters.
 - 7. Correct malfunctioning units on-site, where possible, and retest to demonstrate compliance; otherwise, replace with new units and retest.
 - 8. Perform the following infrared (thermographic) scan tests and inspections, and prepare reports:
 - a. Initial Infrared Scanning: After Substantial Completion, but not more than 60 days after Final Acceptance, perform an infrared scan of each VFC. Remove front panels so joints and connections are accessible to portable scanner.
 - b. Follow-up Infrared Scanning: Perform an additional follow-up infrared scan of each VFC 11 months after date of Substantial Completion.
 - c. Instruments and Equipment: Use an infrared scanning device designed to measure temperature or to detect significant deviations from normal values. Provide calibration record for device.
 - 9. Test and adjust controls, remote monitoring, and safeties. Replace damaged and malfunctioning controls and equipment.
- D. VFCs will be considered defective if they do not pass tests and inspections.
- E. Prepare test and inspection reports, including a certified report that identifies the VFC and describes scanning results. Include notation of deficiencies detected, remedial action taken, and observations made after remedial action.

3.6 STARTUP SERVICE

- A. Engage a factory-authorized service representative to perform startup service.
 - 1. Complete installation and startup checks according to manufacturer's written instructions.
 - 2. Coordinate startup with commissioning. .

3.7 ADJUSTING

- A. Program microprocessors for required operational sequences, status indications, alarms, event recording, and display features. Clear events memory after final acceptance testing and prior to Substantial Completion.
- B. Set field-adjustable switches, auxiliary relays, time-delay relays, timers, and overload-relay pickup and trip ranges.
- C. Adjust the trip settings of instantaneous-only circuit breakers and thermal-magnetic circuit breakers with adjustable, instantaneous trip elements. Initially adjust to 6 times the motor nameplate full-load amperes and attempt to start motors several times, allowing for motor cool-down between starts. If tripping occurs on motor inrush, adjust settings in increments until motors start without tripping. Do not exceed 8 times the motor full-load amperes (or 11 times for NEMA Premium Efficient motors if required). Where these maximum settings do not allow starting of a motor, notify Owner before increasing settings.
- D. Set the taps on reduced-voltage autotransformer controllers.
- E. Set field-adjustable circuit-breaker trip ranges as specified in Section 260573 "Overcurrent Protective Device Coordination Study."
- F. Set field-adjustable pressure switches.

3.8 **PROTECTION**

- A. Temporary Heating: Apply temporary heat to maintain temperature according to manufacturer's written instructions until controllers are ready to be energized and placed into service.
- B. Replace VFCs whose interiors have been exposed to water or other liquids prior to Substantial Completion.

3.9 DEMONSTRATION

A. Engage a factory-authorized service representative to train Owner's maintenance personnel to adjust, operate, reprogram, and maintain VFCs.

END OF SECTION 262923

SECTION 283500 - REFRIGERANT DETECTION AND ALARM

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. This Section includes refrigerant monitors, notification appliances, and SCBA.

1.3 DEFINITIONS

- A. CMOS: Complementary metal-oxide semiconductor.
- B. LCD: Liquid-crystal display.
- C. LED: Light-emitting diode.
- D. PIR: Photoacoustic infrared.
- E. SCBA: Self-contained breathing apparatus.

1.4 ACTION SUBMITTALS

- A. Product Data:
 - 1. For each type of refrigerant monitor, include refrigerant sensing range in ppm, temperature and humidity range, alarm outputs, display range, furnished specialties, installation requirements, and electric power requirement.
- B. Shop Drawings:
 - 1. Air-Sampling Tubing: Size, routing, and termination including elevation above finished floor.
 - 2. Wiring Diagrams: Power, signal, and control wiring.

1.5 INFORMATIONAL SUBMITTALS

A. Coordination Drawings: Include machinery-room layout showing location of monitoring devices and air-sampling tubing with filter/inlet locations in relation to refrigerant equipment.

B. Product Certificates: For monitoring devices and SCBA, signed by product manufacturer.

1.6 CLOSEOUT SUBMITTALS

A. Operation and Maintenance Data: For refrigerant monitoring equipment and SCBA to include in emergency, operation, and maintenance manuals.

1.7 MAINTENANCE MATERIAL SUBMITTALS

- A. Furnish extra materials described below that match products installed and that are packaged with protective covering for storage and identified with labels describing contents.
 - 1. One calibration kit including clean air calibration gas bottle for zero calibration and specific refrigerant calibration gas for span calibration, minimum 58-L capacity, pressure regulator, and tubing.

1.8 COORDINATION

A. Coordinate refrigerant detection and alarm system with refrigerant contained in refrigeration equipment for compatibility.

PART 2 - PRODUCTS

2.1 PIR REFRIGERANT MONITOR

- A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
- B. Basis-of-Design Product: Subject to compliance with requirements, provide or a comparable product by one of the following:
 - 1. Chillgard Refrigerant Monitors; MSA; Instrument Division.
- C. Description: Sensor shall be factory tested, calibrated, and certified to continuously measure and display the specific gas concentration and shall be capable of indicating, alarming, and automatically activating ventilation system.
- D. ASHRAE: Monitoring system shall comply with ASHRAE 15 and ASHRAE 147.
- E. Performance:
 - 1. Refrigerant to Be Monitored: R-123.
 - 2. Range: 0 to 1000 ppm.
 - 3. Sensitivity:

- a. Minimum Detectability: 1 ppm.
- b. Accuracy: 0 to 50 ppm; plus or minus 1 ppm. 51 to 1000 ppm; plus or minus 10 percent of reading.
- c. Repeatability: Plus or minus 1 percent of full scale.
- d. Response: Maximum 10 seconds per sample.
- e. Detection Level Set Points:
 - 1) Detection Level 1: 1 ppm.
 - 2) Detection Level 2: 10 ppm.
 - 3) Detection Level 3: 50 ppm.
- 4. Operating Temperature: 32 to 104 deg F.
- 5. Relative Humidity: 20 to 95 percent, noncondensing over the operating temperature range. Compensate sensor for relative humidity.
- 6. Site Elevation: Maximum 1000 feet.
- F. Input/Output Features:
 - 1. Maximum Power Input: 120-V ac, 60 Hz, 75 W.
 - 2. Number of Air-Sampling Points: Four Eight 16 3.
 - 3. Air-Sampling Point Inlet Filter: 0.10-micron filter element for each sampling point.
 - 4. Air-Sampling Point Analog Output: 0- to 10-V dc into 2k ohms, or 4- to 20-mA into 1k ohms matched to sensor output.
 - 5. Alarm Relays: Minimum 4 relays at a minimum of 5-A resistive load each.
 - 6. Alarm Set Points: Displayed and adjustable through keypad on front of meter.
 - 7. Alarm Silence Switch: Mount in the front panel of the monitor to stop audible and visual notification appliances, but alarm LED remains illuminated.
 - 8. Alarm Manual Reset: Momentary-contact push button in the front panel of the monitor stops audible and visual notification appliances, extinguishes alarm LED, and returns monitor to detection mode at current detection levels.
 - 9. Display: Alphanumeric LCD, LED indicating lights for each detection level; acknowledge switch and test switch mounted on front panel; alarm status LEDs and service fault/trouble LEDs.
 - 10. Audible Output: Minimum 75 dB at 10 feet.
 - 11. Visible Output: Strobe light.
 - 12. Sensor Analog Output: 0- to 10-V dc into 2k ohms, or 4- to 20-mA into 1k ohms.
 - 13. Serial Output: RS-232 or RS-485 compatible with HVAC controls.
 - 14. Enclosure: NEMA 250, Type 12, with locking quarter-turn latch and key.

2.2 NOTIFICATION APPLIANCES

A. Horns: Comply with UL 464; electric-vibrating-polarized type, listed by a qualified testing agency with provision for housing the operating mechanism behind a grille. Horns shall produce a sound-pressure level of 90 dBA, measured 10 feet from the horn.

B. Visible Alarm Devices: Comply with UL 1971; three color xenon strobe lights, with clear or nominal white polycarbonate lens mounted on an aluminum faceplate. The words "REFRIGERANT DETECTION" printed in minimum 1/2-inch- high letters on the lens. Rated light output is 110 candela.

2.3 AIR-SAMPLING TUBING

A. Annealed-Temper Copper Tubing: ASTM B 88, Type L.

PART 3 - EXECUTION

3.1 INSTALLATION

- A. Comply with ASHRAE 15 and ASHRAE 147.
- B. Install air-sampling inlets, or diffusion type monitors in pits, tunnels, or trenches in machinery room that are accessible to personnel.
- C. Floor mount diffusion-type monitor, sensor/transmitters, or air-sampling inlets on slotted channel frame 12 to 18 inches above the floor in a location near the refrigerant source or between the refrigerant source and the ventilation duct inlet.
- D. Wall mount air-sampling multiple-point monitors with top of unit 60 inches above finished floor.
- E. Run air-sampling tubing from monitor to air-sampling point, in size as required by monitor manufacturer. Install tubing with maximum unsupported length of 36 inches, for tubing exposed to view. Terminate air-sampling tubing at sampling point with filter recommended by monitor manufacturer.
- F. Install air-sampling tubing with sufficient slack and flexible connections to allow for vibration of tubing and movement of equipment.
- G. Purge air-sampling tubing with dry, oil-free compressed air before connecting to monitor.
- H. Number-code or color-code air-sampling tubing for future identification and service of air-sampling multiple-point monitors.
- I. Extend air-sampling tubing from exhaust part of multiple-point monitors to outside.
- J. Install warning signs, labels, and nameplates to identify detection devices and SCBA according to Section 230553 "Identification for HVAC Piping and Equipment."
- K. Place warning signs inside and outside each door to the refrigeration equipment room. Sample wording: "AUDIBLE AND VISUAL ALARM SOUNDING INDICATES REFRIGERANT DETECTION - ENTRY REQUIRES SCBA."

- L. Audible Alarm-Indicating Devices: Install at each entry door to refrigeration equipment room, and position not less than 6 inches below the ceiling. Install horns on flush-mounted back boxes with the device-operating mechanism concealed behind a grille.
- M. Visible Alarm-Indicating Devices: Install adjacent to each alarm horn at each entry door to refrigeration equipment room, and position at least 6 inches below the ceiling.

3.2 FIELD QUALITY CONTROL

- A. Manufacturer's Field Service: Engage a factory-authorized service representative to inspect, test, and adjust components, assemblies, and equipment installations, including connections. Report results in writing.
- B. Tests and Inspections:
 - 1. Inspect field-assembled components, equipment installation, and electrical connections for compliance with requirements.
 - 2. Test and adjust controls and safeties.
 - 3. Test Reports: Prepare a written report to record the following:
 - a. Test procedures used.
 - b. Test results that comply with requirements.
 - c. Test results that do not comply with requirements and corrective action taken to achieve compliance with requirements.
- C. Repair or replace malfunctioning units and retest as specified above.

3.3 DEMONSTRATION

 Engage a factory-authorized service representative to train Owner's maintenance personnel to adjust, operate, and maintain refrigerant detection devices and SCBA equipment. Refer to requirements in Section 017900 "Demonstration and Training."

END OF SECTION 283500

THIS PAGE INTENTIONALLY LEFT BLANK
SECTION 31 10 00 - SITE CLEARING

PART 1 GENERAL

- 1.1 SECTION INCLUDES
 - A. Clearing and protection of vegetation.
 - B. Removal of existing debris.

1.2 RELATED REQUIREMENTS

- A. Section 01 10 00 Summary: Limitations on Contractor's use of site and premises.
- B. Section 01 50 00 Temporary Facilities and Controls: Site fences, security, protective barriers, and waste removal.
- C. Section 01 70 00 Execution and Closeout Requirements: Project conditions; protection of bench marks, survey control points, and existing construction to remain; reinstallation of removed products.
- D. Section 01 74 19 Construction Waste Management and Disposal: Limitations on disposal of removed materials; requirements for recycling.
- E. Section 02 41 00 Demolition: Removal of built elements and utilities.
- F. Section 31 22 00 Grading: Topsoil removal.
- G. Section 31 23 23 Fill: Filling holes, pits, and excavations generated as a result of removal operations.

1.3 SUBMITTALS

- A. See Section 01 30 00 Administrative Requirements, for submittal procedures.
- B. Site Plan: Showing:
 - 1. Vegetation removal limits.
 - 2. Areas for temporary construction and field offices.

1.4 QUALITY ASSURANCE

A. Clearing Firm: Company specializing in the type of work required.

PART 2 PRODUCTS

- 2.1 MATERIALS
 - A. Fill Material: As specified in Section 31 23 23 Fill

PART 3 EXECUTION

- 3.1 SITE CLEARING
 - A. Comply with other requirements specified in Section 01 70 00.
 - B. Minimize production of dust due to clearing operations; do not use water if that will result in ice, flooding, sedimentation of public waterways or storm sewers, or other pollution.

3.2 EXISTING UTILITIES AND BUILT ELEMENTS

- A. Coordinate work with utility companies; notify before starting work and comply with their requirements; obtain required permits.
- B. Protect existing utilities to remain from damage.
- C. Do not disrupt public utilities without permit from authority having jurisdiction.
- D. Protect existing structures and other elements that are not to be removed.

3.3 VEGETATION

- A. Scope: Remove trees, shrubs, brush, and stumps in areas to be covered by building structure, paving, playing fields, lawns, and planting beds.
- B. Do not remove or damage vegetation beyond the limits indicated on drawings.
- C. Install substantial, highly visible fences at least 3 feet high to prevent inadvertent damage to vegetation to remain:
 - 1. At vegetation removal limits.
 - 2. Around other vegetation to remain within vegetation removal limits.
 - 3. See Section 01 50 00 for fence construction requirements.
- D. In areas where vegetation must be removed but no construction will occur other than pervious paving, remove vegetation with minimum disturbance of the subsoil.
- E. Vegetation Removed: Do not burn, bury, landfill, or leave on site, except as indicated.
 - 1. Chip, grind, crush, or shred vegetation for mulching, composting, or other purposes; preference should be given to on-site uses.
 - 2. Trees: Sell if marketable; if not, treat as specified for other vegetation removed; remove stumps and roots to depth of 18 inches.
 - 3. Sod: Re-use on site if possible; otherwise sell if marketable, and if not, treat as specified for other vegetation removed.
 - 4. Fill holes left by removal of stumps and roots, using suitable fill material, with top surface neat in appearance and smooth enough not to constitute a hazard to pedestrians.
- F. Restoration: If vegetation outside removal limits or within specified protective fences is damaged or destroyed due to subsequent construction operations, replace at no cost to Owner.

3.4 DEBRIS

- A. Remove debris, junk, and trash from site.
- B. Leave site in clean condition, ready for subsequent work.
- C. Clean up spillage and wind-blown debris from public and private lands.

SECTION 31 22 00 - GRADING

PART 1 GENERAL

- 1.1 SECTION INCLUDES
 - A. Removal of topsoil.
 - B. Rough grading the site for building pads.
 - C. Finish grading.

1.2 RELATED REQUIREMENTS

- A. Section 31 10 00 Site Clearing.
- B. Section 31 23 23 Fill: Filling and compaction.

1.3 REFERENCE STANDARDS

- A. PWSI Greenbook Standard Specifications for Public Works Construction; 2015.
- 1.4 SUBMITTALS
 - A. See Section 01 30 00 Administrative Requirements, for submittal procedures.
 - B. Grading Plans:
 - 1. Grading plans, approved and signed by a Civil Engineer, the Soils Engineer, and the Engineering Geologist, shall accompany each application for a grading permit, unless waived by the authorities having jurisdiction.
 - Show the original and designed finish contours, spot elevations of building pads and public improvements, slope ratios, proposed drainage facilities, protective fencing, retaining walls, and any structures of buildings on adjacent properties within 15 feet of the common property lines.
 - C. Designer's Qualification Statement.
 - D. Project Record Documents: Accurately record actual locations of utilities remaining by horizontal dimensions, elevations or inverts, and slope gradients.

1.5 QUALITY ASSURANCE

- A. Designer Qualifications: Perform design under direct supervision of a Professional Engineer experienced in design of this type of work and licensed in the State in which the Project is located.
- B. Perform Work in accordance with the PWSI Greenbook, related supplements, and any City of Oceanside Public Works Department amendments, supplements, and grading ordinances.
- C. Copies of Documents at Project Site: Maintain at the project site a copy of each referenced document that prescribes execution requirements.

PART 2 PRODUCTS

- 2.1 MATERIALS
 - A. Fill Materials: See Section 31 23 23.

PART 3 EXECUTION

- 3.1 EXAMINATION
 - A. Verify that survey bench mark and intended elevations for the Work are as indicated.

3.2 PREPARATION

- A. Identify required lines, levels, contours, and datum.
- B. Stake and flag locations of known utilities.

- C. Locate, identify, and protect from damage above- and below-grade utilities to remain.
- D. Notify utility company to remove and relocate utilities.
- E. Protect site features to remain, including but not limited to bench marks, survey control points, existing structures, sidewalks, paving, and curbs, from damage by grading equipment and vehicular traffic.
- F. Protect plants, lawns, and other features to remain as a portion of final landscaping.

3.3 ROUGH GRADING

- A. Remove topsoil from areas to be further excavated, re-landscaped, or re-graded, without mixing with foreign materials.
- B. Do not remove topsoil when wet.
- C. Remove subsoil from areas to be further excavated, re-landscaped, or re-graded.
- D. Do not remove wet subsoil, unless it is subsequently processed to obtain optimum moisture content.
- E. When excavating through roots, perform work by hand and cut roots with sharp axe.
- F. See Section 31 23 23 for filling procedures.
- G. Stability: Replace damaged or displaced subsoil to same requirements as for specified fill.

3.4 SOIL REMOVAL AND STOCKPILING

- A. Remove excavated topsoil from site.
- B. Stockpile subsoil to be re-used on site; remove remainder from site.
- C. Stockpiles: Use areas designated on site; pile depth not to exceed 8 feet; protect from erosion.

3.5 FINISH GRADING

- A. Before Finish Grading:
 - 1. Verify building and trench backfilling have been inspected.
 - 2. Verify subgrade has been contoured and compacted.
- B. Remove debris, roots, branches, stones, in excess of 1/2 inch in size. Remove soil contaminated with petroleum products.

3.6 TOLERANCES

- A. Top Surface of Subgrade: Plus or minus 0.10 foot (1-3/16 inches) from required elevation.
- B. Top Surface of Finish Grade: Plus or minus 0.04 foot (1/2 inch).

3.7 REPAIR AND RESTORATION

- A. Existing Facilities, Utilities, and Site Features to Remain: If damaged due to this work, repair or replace to original condition.
- B. Other Existing Vegetation to Remain: If damaged due to this work, replace with vegetation of equivalent species and size.
- 3.8 FIELD QUALITY CONTROL
 - A. See Section 31 23 23 for compaction density testing.
- 3.9 CLEANING
 - A. Remove unused stockpiled topsoil and subsoil. Grade stockpile area to prevent standing water.
 - B. Leave site clean and raked, ready to receive landscaping.

SECTION 31 23 23 - FILL

PART 1 GENERAL

- 1.1 SECTION INCLUDES
 - A. Filling, backfilling, and compacting for slabs-on-grade.
 - B. Backfilling and compacting for utilities outside the building to utility main connections.
 - C. Filling holes, pits, and excavations generated as a result of removal (demolition) operations.

1.2 RELATED REQUIREMENTS

- A. Section 31 22 00 Grading: Removal and handling of soil to be re-used.
- B. Section 31 22 00 Grading: Site grading.

1.3 DEFINITIONS

- A. Finish Grade Elevations: Indicated on drawings.
- B. Subgrade Elevations: As required based on finish grade elevations.

1.4 REFERENCE STANDARDS

- A. ASTM D1556 Standard Test Method for Density and Unit Weight of Soil in Place by the Sand-Cone Method; 2007.
- B. ASTM D1557 Standard Test Methods for Laboratory Compaction Characteristics of Soil Using Modified Effort (56,000 ft-lbf/ft3 (2,700 kN m/m3)); 2012.
- C. PWSI Greenbook Standard Specifications for Public Works Construction; 2015.

1.5 SUBMITTALS

- A. See Section 01 30 00 Administrative Requirements, for submittal procedures.
- B. Materials Sources: Submit name of imported materials source.
- C. Fill Composition Test Reports: Results of laboratory tests on proposed and actual materials used.
- D. Compaction Density Test Reports.
- E. Designer's Qualification Statement.
- F. Testing Agency Qualification Statement.

1.6 QUALITY ASSURANCE

- A. Designer Qualifications: Perform design under direct supervision of a Professional Engineer experienced in design of this type of work and licensed in the State in which the Project is located.
- B. Perform Work in accordance with the PWSI Greenbook, related supplements, and any City of Oceanside Public Works Department amendments, supplements, and grading ordinances.
- C. Testing Agency Qualifications: Independent firm specializing in performing testing and inspections of the type specified in this section.
- D. Copies of Documents at Project Site: Maintain at the project site a copy of each referenced document that prescribes execution requirements.

1.7 DELIVERY, STORAGE, AND HANDLING

- A. When necessary, store materials on site in advance of need.
- B. When fill materials need to be stored on site, locate stockpiles where designated.
 - 1. Separate differing materials with dividers or stockpile separately to prevent intermixing.
 - 2. Prevent contamination.
 - 3. Protect stockpiles from erosion and deterioration of materials.

PART 2 PRODUCTS

- 2.1 FILL MATERIALS
 - A. General Fill: Conforming to the PWSI Greenbook, related supplements, and any City of Oceanside Public Works Department amendments and supplements. May include subsoil excavated on-site if in conformance with current standards.
- 2.2 SOURCE QUALITY CONTROL
 - A. See Section 01 40 00 Quality Requirements, for general requirements for testing and analysis of soil material.
 - B. Where fill materials are specified by reference to a specific standard, test and analyze samples for compliance before delivery to site.
 - C. If tests indicate materials do not meet specified requirements, change material and retest.

PART 3 EXECUTION

- 3.1 EXAMINATION
 - A. Verify that survey bench marks and intended elevations for the Work are as indicated.
 - B. Identify required lines, levels, contours, and datum locations.
 - C. See Section 31 22 00 for additional requirements.

3.2 PREPARATION

- A. Scarify and proof roll subgrade surface to a depth of 6 inches to identify soft spots.
- B. Cut out soft areas of subgrade not capable of compaction in place. Backfill with general fill.
- C. Compact subgrade to density equal to or greater than requirements for subsequent fill material.
- D. Until ready to fill, maintain excavations and prevent loose soil from falling into excavation.

3.3 FILLING

- A. Fill to contours and elevations indicated using unfrozen materials.
- B. Fill up to subgrade elevations unless otherwise indicated.
- C. Employ a placement method that does not disturb or damage other work.
- D. Systematically fill to allow maximum time for natural settlement. Do not fill over porous, wet, frozen or spongy subgrade surfaces.
- E. Maintain optimum moisture content of fill materials to attain required compaction density.
- F. Granular Fill: Place and compact materials in equal continuous layers not exceeding 6 inches compacted depth unless indicated otherwise.
- G. Soil Fill: Place and compact material in equal continuous layers not exceeding 8 inches compacted depth unless indicated otherwise.
- H. Slope grade away from building minimum 2 inches in 10 feet, unless noted otherwise. Make gradual grade changes. Blend slope into level areas.
- I. Correct areas that are over-excavated.
 - 1. Load-bearing foundation surfaces: Obtain recommendation from Structural Engineer on correction measures.
 - 2. Other areas: Use general fill, flush to required elevation, compacted to minimum 95 percent of maximum dry density.
- J. Compaction Density Unless Otherwise Specified or Indicated:
 - 1. Under paving, slabs-on-grade, and similar construction: 95 percent of maximum dry density.
- K. Reshape and re-compact fills subjected to vehicular traffic.

3.4 TOLERANCES

- A. Top Surface of General Filling: Plus or minus 1 inch from required elevations.
- B. Top Surface of Filling Under Paved Areas: Plus or minus 1 inch from required elevations.

3.5 FIELD QUALITY CONTROL

- A. See Section 01 40 00 Quality Requirements, for general requirements for field inspection and testing.
- B. Perform compaction density testing on compacted fill in accordance with ASTM D1556.
- C. Evaluate results in relation to compaction curve determined by testing uncompacted material in accordance with [].
- D. If tests indicate work does not meet specified requirements, remove work, replace and retest.
- E. Frequency of Tests: As required by authorities having jurisdiction.
- F. Proof roll compacted fill at surfaces that will be under slabs-on-grade and paving.

3.6 CLEANING

- A. See Section 01 74 19 Construction Waste Management and Disposal, for additional requirements.
- B. Remove unused stockpiled materials, leave area in a clean and neat condition. Grade stockpile area to prevent standing surface water.

SECTION 32 11 23 - AGGREGATE BASE COURSES

PART 1 GENERAL

- 1.1 SECTION INCLUDES
 - A. Aggregate base course.
 - B. Paving aggregates.
- 1.2 RELATED REQUIREMENTS
 - A. Section 31 22 00 Grading: Preparation of site for base course.
 - B. Section 31 23 23 Fill: Compacted fill under base course.
 - C. Section 32 12 16 Asphalt Paving: Finish and binder asphalt courses.
 - D. Section 32 13 13 Concrete Paving: Finish concrete surface course.
 - E. Section 32 17 13 Parking Bumpers: Concrete bumpers.

1.3 REFERENCE STANDARDS

- A. ASTM D1556 Standard Test Method for Density and Unit Weight of Soil in Place by the Sand-Cone Method; 2007.
- B. ASTM D1557 Standard Test Methods for Laboratory Compaction Characteristics of Soil Using Modified Effort (56,000 ft-lbf/ft3 (2,700 kN m/m3)); 2012.
- C. ASTM D2487 Standard Practice for Classification of Soils for Engineering Purposes (Unified Soil Classification System); 2011.
- D. PWSI Greenbook Standard Specifications for Public Works Construction; 2015.

1.4 SUBMITTALS

- A. See Section 01 30 00 Administrative Requirements, for submittal procedures.
- B. Materials Sources: Submit name of imported materials source.
- C. Aggregate Composition Test Reports: Results of laboratory tests on proposed and actual materials used.
- D. Compaction Density Test Reports.
- E. Designer's Qualification Statement.

1.5 QUALITY ASSURANCE

- A. Designer Qualifications: Perform design under direct supervision of a Professional Engineer experienced in design of this type of work and licensed in the State in which the Project is located.
- B. Perform Work in accordance with the PWSI Greenbook, related supplements, and any City of Oceanside Public Works Department amendments, supplements, and grading ordinances.
- C. Testing Agency Qualifications: Independent firm specializing in performing testing and inspections of the type specified in this section.
- D. Copies of Documents at Project Site: Maintain at the project site a copy of each referenced document that prescribes execution requirements.

1.6 DELIVERY, STORAGE, AND HANDLING

- A. When necessary, store materials on site in advance of need.
- B. When aggregate materials need to be stored on site, locate where directed by Owner.
- C. Aggregate Storage, General:
 - 1. Separate differing materials with dividers or stockpile separately to prevent intermixing.
 - 2. Prevent contamination.
 - 3. Protect stockpiles from erosion and deterioration of materials.

PART 2 PRODUCTS

- 2.1 MATERIALS
 - A. Coarse Aggregate : Coarse aggregate, conforming to the PWSI Greenbook, related supplements, and any City of Oceanside Public Works Department amendments and supplements; Class II.
- 2.2 SOURCE QUALITY CONTROL
 - A. See Section 01 40 00 Quality Requirements, for general requirements for testing and analysis of aggregate materials.
 - B. Where aggregate materials are specified using ASTM D2487 classification, test and analyze samples for compliance before delivery to site.
 - C. If tests indicate materials do not meet specified requirements, change material and retest.
 - D. Provide materials of each type from same source throughout the Work.

PART 3 EXECUTION

- 3.1 EXAMINATION
 - A. Verify that survey bench marks and intended elevations for the work are as indicated.
 - B. Verify substrate has been inspected, gradients and elevations are correct, and is dry.

3.2 PREPARATION

- A. Correct irregularities in substrate gradient and elevation by scarifying, reshaping, and re-compacting.
- B. Do not place aggregate on soft, muddy, or frozen surfaces.

3.3 INSTALLATION

- A. Under Bituminous Concrete Paving:
 - 1. Place coarse aggregate to total compacted thickness required by referenced standard.
 - 2. Compact to 95 percent of maximum dry density unless indicated otherwise.
- B. Under Portland Cement Concrete Paving:
 - 1. Place coarse aggregate to total compacted thickness required by referenced standard.
 - 2. Compact to 95 percent of maximum dry density unless indicated otherwise.
- C. Place aggregate in maximum 4 inch layers and roller compact to specified density.
- D. Level and contour surfaces to elevations and gradients indicated.
- E. Add small quantities of fine aggregate to coarse aggregate as appropriate to assist compaction.
- F. Add water to assist compaction. If excess water is apparent, remove aggregate and aerate to reduce moisture content.
- G. Use mechanical tamping equipment in areas inaccessible to compaction equipment.

3.4 TOLERANCES

- A. Flatness: Maximum variation of 1/4 inch measured with 10 foot straight edge.
- B. Scheduled Compacted Thickness: Within 1/4 inch.
- C. Variation From Design Elevation: Within 1/2 inch.
- 3.5 FIELD QUALITY CONTROL
 - A. See Section 01 40 00 Quality Requirements, for general requirements for field inspection and testing.

- B. Perform compaction density testing on compacted aggregate base course in accordance with ASTM D1556.
- C. Evaluate results in relation to compaction curve determined by testing uncompacted material in accordance with ASTM D1557 ("modified Proctor").
- D. If tests indicate work does not meet specified requirements, remove work, replace and retest.
- E. Proof roll compacted aggregate at surfaces that will be under slabs-on-grade and paving.
- 3.6 CLEANING
 - A. Remove unused stockpiled materials, leave area in a clean and neat condition. Grade stockpile area to prevent standing surface water.

SECTION 32 12 16 - ASPHALT PAVING

PART 1 GENERAL

- 1.1 SECTION INCLUDES
 - A. Single course bituminous concrete paving.
 - B. Surface sealer.
- 1.2 RELATED REQUIREMENTS
 - A. Section 31 22 00 Grading: Preparation of site for paving and base.
 - B. Section 31 23 23 Fill: Compacted subgrade for paving.
 - C. Section 32 11 23 Aggregate Base Courses: Aggregate base course.
 - D. Section 32 13 13 Concrete Paving: Concrete curbs.
 - E. Section 32 17 13 Parking Bumpers: Concrete bumpers.
 - F. Section 32 17 23.13 Painted Pavement Markings.
- 1.3 REFERENCE STANDARDS
 - A. AI MS-2 Mix Design Methods for Asphalt Concrete and Other Hot-Mix Types; 1997.
 - B. AI MS-19 A Basic Asphalt Emulsion Manual; Fourth Edition.
 - C. ASTM D946 Standard Specification for Penetration-Graded Asphalt Cement for Use in Pavement Construction; 2009a.
 - D. PWSI Greenbook Standard Specifications for Public Works Construction; 2015.

1.4 SUBMITTALS

- A. See Section 01 30 00 Administrative Requirements, for submittal procedures.
- B. Materials Sources: Submit name of asphalt paving materials source.
- C. Designer's Qualification Statement.
- 1.5 PERFORMANCE REQUIREMENTS
 - A. Design paving and subbase for parking.
- 1.6 QUALITY ASSURANCE
 - A. Designer Qualifications: Perform design under direct supervision of a Professional Engineer experienced in design of this type of work and licensed in the State in which the Project is located.
 - B. Perform Work in accordance with the PWSI Greenbook, related supplements, and any City of Oceanside Public Works Department amendments and supplements.
 - C. Mixing Plant: Conform to City of Oceanside Public Works standard.
 - D. Obtain materials from same source throughout.
- 1.7 REGULATORY REQUIREMENTS
 - A. Conform to applicable code for paving work.
- 1.8 FIELD CONDITIONS
 - A. Do not place asphalt when ambient air or base surface temperature is less than 40 degrees F, or surface is wet or frozen.
 - B. Place bitumen mixture when temperature is not more than 15 F degrees below bitumen supplier's bill of lading and not more than maximum specified temperature.

PART 2 PRODUCTS

- 2.1 MATERIALS
 - A. Asphalt Cement: In accordance with the PWSI Greenbook, related supplements, and any City of Oceanside Public Works Department amendments and supplements.
 - B. Aggregate for Wearing Course: In accordance with the PWSI Greenbook, related supplements, and any City of Oceanside Public Works Department amendments and supplements.
 - C. Primer: In accordance with City of Oceanside Public Works standards.
 - D. Tack Coat: In accordance with City of Oceanside Public Works standards.
 - E. Seal Coat: AI MS-19, fog type.
- 2.2 ASPHALT PAVING MIXES AND MIX DESIGN
 - A. Use dry material to avoid foaming. Mix uniformly.
 - B. Wearing Course: In accordance with the PWSI Greenbook, related supplements, and any City of Oceanside Public Works Department amendments and supplements.
 - C. Submit proposed mix design of each class of mix for review prior to beginning of work.
- 2.3 SOURCE QUALITY CONTROL
 - A. Test mix design and samples in accordance with AI MS-2.

PART 3 EXECUTION

- 3.1 EXAMINATION
 - A. Verify that compacted subgrade is dry and ready to support paving and imposed loads.
 - B. Verify gradients and elevations of base are correct.
- 3.2 BASE COURSE
 - A. See Section 32 11 23.
- 3.3 PREPARATION PRIMER
 - A. Apply primer in accordance with manufacturer's instructions.
 - B. Apply primer on aggregate base or subbase at uniform rate of 1/3 gal/sq yd.
 - C. Apply primer to contact surfaces of curbs, gutters.
 - D. Use clean sand to blot excess primer.
- 3.4 PREPARATION TACK COAT
 - A. Apply tack coat in accordance with manufacturer's instructions.
 - B. Apply tack coat on asphalt or concrete surfaces over subgrade surface at uniform rate of 1/3 gal/sq yd.
 - C. Apply tack coat to contact surfaces of curbs and gutters.
 - D. Coat surfaces of manhole and catch basin frames with oil to prevent bond with asphalt pavement. Do not tack coat these surfaces.
- 3.5 PLACING ASPHALT PAVEMENT SINGLE COURSE
 - A. Install Work in accordance with the PWSI Greenbook, related supplements, and any City of Oceanside Public Works Department amendments and supplements.
 - B. Place asphalt within 24 hours of applying primer or tack coat.
 - C. Compact pavement by rolling to specified density. Do not displace or extrude pavement from position. Hand compact in areas inaccessible to rolling equipment.

D. Perform rolling with consecutive passes to achieve even and smooth finish without roller marks.

3.6 SEAL COAT

- A. Apply seal coat to surface course in accordance with AI MS-19.
- 3.7 TOLERANCES
 - A. Flatness: Maximum variation of 1/4 inch measured with 10 foot straight edge.
 - B. Variation from True Elevation: Within 1/2 inch.

3.8 PROTECTION

A. Immediately after placement, protect pavement from mechanical injury for three days or until surface temperature is less than 140 degrees F.

SECTION 32 13 13 - CONCRETE PAVING

PART 1 GENERAL

- 1.1 SECTION INCLUDES
 - A. Concrete sidewalks, integral curbs, and roads.
- 1.2 RELATED REQUIREMENTS
 - A. Section 07 92 00 Joint Sealants: Sealing joints.
 - B. Section 32 11 23 Aggregate Base Courses: Coarse base course.
 - C. Section 32 17 13 Parking Bumpers: Precast concrete parking bumpers.
 - D. Section 32 17 23.13 Painted Pavement Markings: Pavement markings.

1.3 REFERENCE STANDARDS

- A. ACI 211.1 Standard Practice for Selecting Proportions for Normal, Heavyweight, and Mass Concrete; 1991 (Reapproved 2009).
- B. ACI 301 Specifications for Structural Concrete; 2010 (Errata 2012).
- C. ACI 305R Hot Weather Concreting; 2010.
- D. ACI 306R Cold Weather Concreting; 2010.
- E. ASTM A615/A615M Standard Specification for Deformed and Plain Carbon Steel Bars for Concrete Reinforcement; 2015.
- F. ASTM C1059/C1059M Standard Specification for Latex Agents for Bonding Fresh to Hardened Concrete; 2013.
- G. ASTM C1107/C1107M Standard Specification for Packaged Dry, Hydraulic-Cement Grout (Nonshrink); 2014.
- H. ASTM C39/C39M Standard Test Method for Compressive Strength of Cylindrical Concrete Specimens; 2015a.
- I. ASTM C94/C94M Standard Specification for Ready-Mixed Concrete; 2015.
- J. ASTM D1751 Standard Specification for Preformed Expansion Joint Filler for Concrete Paving and Structural Construction (Nonextruding and Resilient Bituminous Types); 2004 (Reapproved 2013).
- K. ASTM D1752 Standard Specification for Preformed Sponge Rubber Cork and Recycled PVC Expansion Joint Fillers for Concrete Paving and Structural Construction; 2004a (Reapproved 2013).
- L. PWSI Greenbook Standard Specifications for Public Works Construction; 2015.

1.4 SUBMITTALS

- A. See Section 01 30 00 Administrative Requirements, for submittal procedures.
- B. Product Data: Provide data on joint filler and bonding agent.
- C. Jointing Plan: Show joint locations for Architect approval.
- D. Designer's Qualification Statement.
- E. Design Data: Indicate pavement thickness, designed concrete strength, reinforcement, and typical details.

1.5 QUALITY ASSURANCE

A. Designer Qualifications: Perform design under direct supervision of a Professional Engineer experienced in design of this type of work and licensed in the State in which the Project is located.

- B. Perform Work in accordance with the PWSI Greenbook, related supplements, and any City of Oceanside Public Works Department amendments and supplements.
- C. Mixing Plant: Conform to City of Oceanside Public Works standard.
- D. Obtain materials from same source throughout.

PART 2 PRODUCTS

- 2.1 PAVING ASSEMBLIES
 - A. Comply with applicable requirements of the PWSI Greenbook, related supplements, and any City of Oceanside Public Works Department amendments and supplements.
 - B. Design paving for concrete sidewalks and driveways and roadway as indicated.

2.2 FORM MATERIALS

- A. Wood form material, profiled to suit conditions.
- B. Joint Filler: Preformed; non-extruding bituminous type (ASTM D1751) or sponge rubber or cork (ASTM D1752).
- 2.3 REINFORCEMENT
 - A. Reinforcing Steel: ASTM A615/A615M, Grade 60 (60,000 psi) yield strength; deformed billet steel bars; unfinished.
 - B. Dowels: ASTM A615/A615M, Grade 60 60,000 psi yield strength; deformed billet steel bars; unfinished finish.

2.4 CONCRETE MATERIALS

- A. Obtain cementitious materials from same source throughout.
- B. Concrete Materials: Comply with applicable requirements of the PWSI Greenbook, related supplements, and any City of Oceanside Public Works Department amendments and supplements
- 2.5 ACCESSORIES
 - A. Bonding Agent: ASTM C1059/C1059M, Type II, non-redispersible, acrylic emulsion or styrene butadiene.
 - B. Non-Shrink Cementitious Grout: Premixed compound consisting of non-metallic aggregate, cement, water reducing and plasticizing agents.
 1. Grout: Comply with ASTM C1107/C1107M.

2.6 CONCRETE MIX DESIGN

- A. Proportioning Normal Weight Concrete: Comply with ACI 211.1 recommendations.
- B. Concrete Strength: Establish required average strength for each type of concrete on the basis of field experience or trial mixtures, as specified in ACI 301.
 - 1. For trial mixtures method, employ independent testing agency acceptable to Architect for preparing and reporting proposed mix designs.
- C. Admixtures: Add acceptable admixtures as recommended in ACI 211.1 and at rates recommended by manufacturer.
- D. Fiber Reinforcement: Add to mix at rate of 1.5 pounds per cubic yard, or as recommended by manufacturer for specific project conditions.
- E. Concrete Properties: In conformance with the PWSI Greenbook, related supplements, and any City of Oceanside Public Works Department amendments and supplements

2.7 MIXING

A. Transit Mixers: Comply with ASTM C94/C94M.

PART 3 EXECUTION

3.1 EXAMINATION

- A. Verify compacted subgrade is acceptable and ready to support paving and imposed loads.
- B. Verify gradients and elevations of base are correct.

3.2 SUBBASE

A. See Section 32 11 23 for construction of base course for work of this Section.

3.3 PREPARATION

- A. Moisten base to minimize absorption of water from fresh concrete.
- B. Coat surfaces of manhole and catch basin frames with oil to prevent bond with concrete pavement.
- C. Notify Architect minimum 24 hours prior to commencement of concreting operations.

3.4 FORMING

- A. Place and secure forms to correct location, dimension, profile, and gradient.
- B. Assemble formwork to permit easy stripping and dismantling without damaging concrete.
- C. Place joint filler vertical in position, in straight lines. Secure to formwork during concrete placement.

3.5 REINFORCEMENT

- A. Place reinforcement as indicated or in conformance with referenced standards.
- B. Place dowels to achieve pavement and curb alignment as detailed.
- C. Provide doweled joints 18 inch on center at interruptions of concrete with one end of dowel set in capped sleeve to allow longitudinal movement.

3.6 COORDINATION WITH EXISTING CONSTRUCTION

- A. Connection to Existing Construction: Provide doweled construction joints at intersection of new concrete and existing concrete paving. Dowel new concrete to existing construction. Drill holes in existing concrete, insert steel dowels and pack with non-shrink grout. Stagger dowels from existing reinforcement.
- B. Preparation of Existing Concrete: Prepare previously placed concrete by cleaning with steel brush and apply bonding agent in accordance with manufacturer's instructions. Omit bonding agent where expansion joint occurs.

3.7 COLD AND HOT WEATHER CONCRETING

- A. Follow recommendations of ACI 305R when concreting during hot weather.
- B. Follow recommendations of ACI 306R when concreting during cold weather.
- C. Do not place concrete when base surface temperature is less than 40 degrees F, or surface is wet or frozen.

3.8 PLACING CONCRETE

- A. Place concrete in accordance with the PWSI Greenbook, related supplements, and any City of Oceanside Public Works Department amendments and supplements.
- B. Ensure reinforcement, inserts, embedded parts, formed joints are not disturbed during concrete placement.
- C. Place concrete continuously over the full width of the panel and between predetermined construction joints. Do not break or interrupt successive pours such that cold joints occur.

- D. Place concrete to approved joint pattern.
- 3.9 JOINTS
 - A. Align curb, gutter, and sidewalk joints.
 - B. Place 3/8 inch wide expansion joints where indicated and to separate paving from vertical surfaces and other components and in pattern indicated.
 - 1. Form joints with joint filler extending from bottom of pavement to within 1/2 inch of finished surface.
 - 2. Secure to resist movement by wet concrete.
 - C. Provide scored joints.
 - 1. At intervals matching existing construction and as indicated on approved jointing plan.
 - 2. Between sidewalks and curbs.
 - 3. Between curbs and pavement.
 - D. Saw cut contraction joints 3/16 inch wide at an optimum time after finishing. Cut 1/3 into depth of slab.
- 3.10 FINISHING
 - A. Paving Finish: Match existing adjacent finish.
- 3.11 TOLERANCES
 - A. Maximum Variation of Surface Flatness: 1/4 inch in 10 ft.
 - B. Maximum Variation From True Position: 1/4 inch.

3.12 FIELD QUALITY CONTROL

- A. An independent testing agency will perform field quality control tests, as specified in Section 01 40 00 Quality Requirements.
 - 1. Provide free access to concrete operations at project site and cooperate with appointed firm.
 - 2. Submit proposed mix design of each class of concrete to inspection and testing firm for review prior to commencement of concrete operations.
 - 3. Tests of concrete and concrete materials may be performed at any time to ensure conformance with specified requirements.
- B. Compressive Strength Tests: ASTM C39/C39M; for each test, mold and cure three concrete test cylinders. Obtain test samples for every 100 cu yd or less of each class of concrete placed.
 - 1. Take one additional test cylinder during cold weather concreting, cured on job site under same conditions as concrete it represents.
 - 2. Perform one slump test for each set of test cylinders taken.
- C. Maintain records of placed concrete items. Record date, location of pour, quantity, air temperature, and test samples taken.

3.13 PROTECTION

- A. Immediately after placement, protect pavement from premature drying, excessive hot or cold temperatures, and mechanical injury.
- B. Do not permit pedestrian traffic over pavement until 75 percent design strength of concrete has been achieved.

SECTION 32 17 13 - PARKING BUMPERS

PART 1 GENERAL

- 1.1 SECTION INCLUDES
 - A. Precast concrete parking bumpers and anchorage.
- 1.2 REFERENCE STANDARDS
 - A. ASTM A615/A615M Standard Specification for Deformed and Plain Carbon Steel Bars for Concrete Reinforcement; 2015.
 - B. ASTM C150/C150M Standard Specification for Portland Cement; 2015.
 - C. ASTM C260/C260M Standard Specification for Air-Entraining Admixtures for Concrete; 2010a.
 - D. ASTM C330/C330M Standard Specification for Lightweight Aggregates for Structural Concrete; 2014.
- 1.3 SUBMITTALS
 - A. See Section 01 30 00 Administrative Requirements, for submittal procedures.
 - B. Product Data: Provide unit configuration, dimensions.

PART 2 PRODUCTS

- 2.1 MATERIALS
 - A. Parking Bumpers: Precast concrete, conforming to the following:
 - 1. Nominal Size: 5 inches high, 9 inches wide, 6 feet long.
 - 2. Profile: Manufacturer's standard.
 - 3. Cement: ASTM C150, Portland Type I Normal; gray color.
 - 4. Concrete Materials: ASTM C330/C330M aggregate, water, and sand.
 - 5. Reinforcing Steel: ASTM A615/A615M, deformed steel bars; galvanized, strength and size commensurate with precast unit design.
 - 6. Air Entrainment Admixture: ASTM C260/C260M.
 - 7. Concrete Mix: Minimum 4,000 psi compressive strength after 28 days, air entrained to 5 to 7 percent.
 - 8. Use rigid molds, constructed to maintain precast units uniform in shape, size and finish. Maintain consistent quality during manufacture.
 - 9. Embed reinforcing steel, and drill or sleeve for two dowels.
 - 10. Cure units to develop concrete quality, and to minimize appearance blemishes such as non-uniformity, staining, or surface cracking.
 - 11. Minor patching in plant is acceptable, providing appearance of units is not impaired.
 - B. Dowels: Cut reinforcing steel, 1/2 inch diameter, 10 inch long, pointed tip.

PART 3 EXECUTION

- 3.1 INSTALLATION
 - A. Install units without damage to shape or finish. Replace or repair damaged units.
 - B. Install units in alignment with adjacent work.
 - C. Fasten units in place with 2 dowels per unit.

SECTION 32 17 23.13 - PAINTED PAVEMENT MARKINGS

PART 1 GENERAL

- 1.1 SECTION INCLUDES
 - A. Parking lot markings, including curb markings.
 - B. "No Parking" curb painting.
- 1.2 RELATED REQUIREMENTS
 - A. Section 32 12 16 Asphalt Paving.
 - B. Section 32 13 13 Concrete Paving.

1.3 REFERENCE STANDARDS

- A. MPI (APL) Master Painters Institute Approved Products List; Master Painters and Decorators Association; current edition, www.paintinfo.com.
- B. FHWA MUTCD Manual on Uniform Traffic Control Devices for Streets and Highways; U.S. Department of Transportation, Federal Highway Administration; Current Edition.

1.4 SUBMITTALS

- A. See Section 01 30 00 Administrative Requirements, for submittal procedures.
- B. Product Data: Manufacturer's data sheets on each product to be used, including:
 - 1. Preparation instructions and recommendations.
 - 2. Storage and handling requirements and recommendations.
 - 3. Installation methods.
- C. Maintenance Materials: Furnish the following for Owner's use in maintenance of project.
 - 1. See Section 01 60 00 Product Requirements, for additional provisions.
 - 2. Extra Paint: 2 containers, 1 gallon size, of each type and color.

1.5 DELIVERY, STORAGE, AND HANDLING

- A. Deliver paint in containers of at least 5 gallons accompanied by batch certificate.
- B. Store products in manufacturer's unopened packaging until ready for installation.
- C. Store and dispose of solvent-based materials, and materials used with solvent-based materials, in accordance with requirements of local authorities having jurisdiction.

1.6 FIELD CONDITIONS

A. Do not install products under environmental conditions outside manufacturer's absolute limits.

PART 2 PRODUCTS

2.1 MATERIALS

- A. Line and Zone Marking Paint: MPI (APL) No. 97 Latex Traffic Marking Paint; color(s) as indicated.
 - 1. Curbs: Red with white "NO PARKING" text as indicated.
 - 2. Parking Lots: White.

PART 3 EXECUTION

- 3.1 EXAMINATION
 - A. Do not begin installation until substrates have been properly prepared.
 - B. If substrate preparation is the responsibility of another installer, notify Architect of unsatisfactory preparation before proceeding.

3.2 PREPARATION

- A. Allow new pavement surfaces to cure for a period of not less than 14 days before application of marking materials.
- B. Prepare surfaces using the methods recommended by the manufacturer for achieving the best result for the substrate under the project conditions.
- C. Obliteration of existing markings using paint is acceptable in lieu of removal; apply the black paint in as many coats as necessary to completely obliterate the existing markings.
- D. Clean surfaces thoroughly prior to installation.
 - 1. Remove dust, dirt, and other granular surface deposits by sweeping, blowing with compressed air, rinsing with water, or a combination of these methods.
 - 2. Completely remove rubber deposits, existing paint markings, and other coatings adhering to the pavement, by scraping, wire brushing, sandblasting, mechanical abrasion, or approved chemicals.
- E. Where oil or grease are present, scrub affected areas with several applications of trisodium phosphate solution or other approved detergent or degreaser, and rinse thoroughly after each application; after cleaning, seal oil-soaked areas with cut shellac to prevent bleeding through the new paint.
- F. Establish survey control points to determine locations and dimensions of markings; provide templates to control paint application by type and color at necessary intervals.

3.3 INSTALLATION

- A. Begin pavement marking as soon as practicable after surface has been cleaned and dried.
- B. Do not apply paint if temperature of surface to be painted or the atmosphere is less than 50 degrees F or more than 95 degrees F.
- C. Apply in accordance with manufacturer's instructions using an experienced technician that is thoroughly familiar with equipment, materials, and marking layouts.
- D. Comply with FHWA MUTCD manual (http://mutcd.fhwa.dot.gov) for details not shown.
- E. Apply markings in locations determined by measurement from survey control points; preserve control points until after markings have been accepted.
- F. Apply uniformly painted markings of color(s), lengths, and widths as indicated on the drawings true, sharp edges and ends.
 - 1. Apply paint in one coat only.
 - 2. Wet Film Thickness: 0.015 inch, minimum.
 - 3. Length Tolerance: Plus or minus 3 inches.
 - 4. Width Tolerance: Plus or minus 1/8 inch.
- G. Parking Lots: Apply painted curbs and other markings indicated on drawings.
 - 1. Mark the words "NO PARKING" as indicated.
 - 2. Hand application by pneumatic spray is acceptable.
- H. Symbols and Text: Use a suitable template that will provide a pavement marking with true, sharp edges and ends, of the design and size indicated.

3.4 DRYING, PROTECTION, AND REPLACEMENT

- A. Protect newly painted markings so that paint is not picked up by tires, smeared, or tracked.
- B. Provide barricades, warning signs, and flags as necessary to prevent traffic crossing newly painted markings.
- C. Allow paint to dry at least the minimum time specified by the applicable paint standard and not less than that recommended by the manufacturer.
- D. Remove and replace markings that are applied at less than minimum material rates; deviate from true alignment; exceed length and width tolerances; or show light spots, smears, or other deficiencies or irregularities.

- E. Remove markings in manner to avoid damage to the surface to which the marking was applied, using carefully controlled sand blasting, approved grinding equipment, or other approved method.
- F. Replace removed markings at no additional cost to Owner.

SECTION 32 30 00 - SITE FURNISHINGS

PART 1 GENERAL

- 1.1 SECTION INCLUDES
 - A. Bollards.
- 1.2 RELATED REQUIREMENTS
 - A. Structural Drawings: Bollard infill and underground encasement.

1.3 REFERENCE STANDARDS

- A. ASTM A53/A53M Standard Specification for Pipe, Steel, Black and Hot-Dipped, Zinc-Coated, Welded and Seamless; 2012.
- B. ICC/CBSC (CBC) California Building Code; 2016.

1.4 SUBMITTALS

- A. See Section 01 30 00 Administrative Requirements, for submittal procedures.
- B. Product Data: Provide manufacturer92s specifications and descriptive literature, installation instructions, and maintenance information.
- C. Shop Drawings: Indicate plans for each unit or groups of units, elevations with model number, overall dimensions; construction, and anchorage details.
 - 1. Foundation Design: Indicate detailed dimensions, reinforcing, and imposed loads.
- D. Samples: Submit two sets of manufacturer's available colors for steel bollards.
- 1.5 QUALITY ASSURANCE
 - A. Designer Qualifications: Design bollard foundation under direct supervision of a Professional Structural Engineer experienced in design of this Work and licensed the State in which the Project is located.

PART 2 PRODUCTS

- 2.1 MANUFACTURERS
 - A. Steel Pipe Bollards:
 - 1. Calpipe Security Bollards: www.calpipebollards.com.
 - 2. Substitutions: See Section 01 60 00 Product Requirements.

2.2 BOLLARDS

- A. Steel Pipe Bollards: Concrete filled steel pipe with plain shaft.
 - 1. Shape: Round.
 - 2. Diameter: 8 inches.
 - 3. Height Above Grade: 36 inches.
 - 4. Cap: Formed steel dome.
 - 5. Materials:
 - a. Steel Pipe: ASTM A53/A53M, standard weight.
 - b. Factory Finish: Powder coated.
 - c. Color: As selected by Architect from manufacturer92s standard range.
 - 6. Mounting: In-ground.
 - 7. Products:
 - a. Calpipe Security Bollards; Fixed Embedded Bollard, Model IBF08040.
 - b. Substitutions: See Section 01 60 00 Product Requirements.
- B. Steel Pipe Removable Bollards: Concrete filled steel pipe with plain shaft and external locking system with hinged, padlockable lid.

- 1. Shape: Round.
- 2. Diameter: 8 inches.
- 3. Height Above Grade: 36 inches.
- 4. Cap: Formed steel dome.
- 5. Materials:
 - a. Steel Pipe: ASTM A53/A53M, standard weight.
 - b. Factory Finish: Powder coated.
 - c. Color: As selected by Architect from manufacturer's standard range.
- 6. Mounting: In-ground.
- 7. Products:
 - a. Calpipe Security Bollards; External Locking Security Bollard Bollard, Model IBP08040.
 - b. Substitutions: See Section 01 60 00 Product Requirements.

PART 3 EXECUTION

- 3.1 EXAMINATION
 - A. Verify that mounting surfaces, preinstalled anchor bolts, or other mounting devices are properly installed; and ready to receive site furnishing items.
 - B. Do not begin installation until unacceptable conditions are corrected.

3.2 INSTALLATION

- A. Install site furnishings in accordance with approved shop drawings, and manufacturer92s installation instructions.
- B. See Structural Drawings for bollard infill and underground encasement.